Search results for: spice simulation
4509 Elasto-Viscoplastic Constitutive Modelling of Slow-Moving Landslides
Authors: Deepak Raj Bhat, Kazushige Hayashi, Yorihiro Tanaka, Shigeru Ogita, Akihiko Wakai
Abstract:
Slow-moving landslides are one of the major natural disasters in mountainous regions. Therefore, study of the creep displacement behaviour of a landslide and associated geological and geotechnical issues seem important. This study has addressed and evaluated the slow-moving behaviour of landslide using the 2D-FEM based Elasto-viscoplastic constitutive model. To our based knowledge, two new control constitutive parameters were incorporated in the numerical model for the first time to better understand the slow-moving behaviour of a landslide. First, the predicted time histories of horizontal displacement of the landslide are presented and discussed, which may be useful for landslide displacement prediction in the future. Then, the simulation results of deformation pattern and shear strain pattern is presented and discussed. Moreover, the possible failure mechanism along the slip surface of such landslide is discussed based on the simulation results. It is believed that this study will be useful to understand the slow-moving behaviour of landslides, and at the same time, long-term monitoring and management of the landslide disaster will be much easier.Keywords: numerical simulation, ground water fluctuations, elasto-viscoplastic model, slow-moving behaviour
Procedia PDF Downloads 794508 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications
Authors: R. M. Kalayappan, N. Kathiravan
Abstract:
In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry
Procedia PDF Downloads 3984507 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir
Authors: Ahmad Fahim Nasiry, Shigeo Honma
Abstract:
We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding
Procedia PDF Downloads 3334506 The BNCT Project Using the Cf-252 Source: Monte Carlo Simulations
Authors: Marta Błażkiewicz-Mazurek, Adam Konefał
Abstract:
The project can be divided into three main parts: i. modeling the Cf-252 neutron source and conducting an experiment to verify the correctness of the obtained results, ii. design of the BNCT system infrastructure, iii. analysis of the results from the logical detector. Modeling of the Cf-252 source included designing the shape and size of the source as well as the energy and spatial distribution of emitted neutrons. Two options were considered: a point source and a cylindrical spatial source. The energy distribution corresponded to various spectra taken from specialized literature. Directionally isotropic neutron emission was simulated. The simulation results were compared with experimental values determined using the activation detector method using indium foils and cadmium shields. The relative fluence rate of thermal and resonance neutrons was compared in the chosen places in the vicinity of the source. The second part of the project related to the modeling of the BNCT infrastructure consisted of developing a simulation program taking into account all the essential components of this system. Materials with moderating, absorbing, and backscattering properties of neutrons were adopted into the project. Additionally, a gamma radiation filter was introduced into the beam output system. The analysis of the simulation results obtained using a logical detector located at the beam exit from the BNCT infrastructure included neutron energy and their spatial distribution. Optimization of the system involved changing the size and materials of the system to obtain a suitable collimated beam of thermal neutrons.Keywords: BNCT, Monte Carlo, neutrons, simulation, modeling
Procedia PDF Downloads 344505 Design of a 3-dB Directional Coupler Using Symmetric Coupled-Lines
Authors: Cem Çindaş, Serkan Şimşek
Abstract:
In this paper, the study and design of a 3-dB 90° directional coupler operating in the S-band is proposed. The coupler employs symmetrical multi-section coupled lines designed in a stripline technique. Design is realized in AWR Design Environment and CST Microwave Studio. Using these two programs played a key role in attaining outcomes swiftly and precisely. The simulation results show that the coupler maintains amplitude consistency within ± 0.3 dB, isolation and reflection losses better than 16 dB, and phase difference between two output ports of 88º±0.6˚ in the 1.7 – 4.35 GHz range. This simulation results indicate an improvement is achieved in fractional bandwidth (FBW) performance around the center frequency of f0 = 3 GHz.Keywords: coupled stripline, directional coupler, multi-section coupler, symmetrical coupler
Procedia PDF Downloads 894504 Application of Simulation of Discrete Events in Resource Management of Massive Concreting
Authors: Mohammad Amin Hamedirad, Seyed Javad Vaziri Kang Olyaei
Abstract:
Project planning and control are one of the most critical issues in the management of construction projects. Traditional methods of project planning and control, such as the critical path method or Gantt chart, are not widely used for planning projects with discrete and repetitive activities, and one of the problems of project managers is planning the implementation process and optimal allocation of its resources. Massive concreting projects is also a project with discrete and repetitive activities. This study uses the concept of simulating discrete events to manage resources, which includes finding the optimal number of resources considering various limitations such as limitations of machinery, equipment, human resources and even technical, time and implementation limitations using analysis of resource consumption rate, project completion time and critical points analysis of the implementation process. For this purpose, the concept of discrete-event simulation has been used to model different stages of implementation. After reviewing the various scenarios, the optimal number of allocations for each resource is finally determined to reach the maximum utilization rate and also to reduce the project completion time or reduce its cost according to the existing constraints. The results showed that with the optimal allocation of resources, the project completion time could be reduced by 90%, and the resulting costs can be reduced by up to 49%. Thus, allocating the optimal number of project resources using this method will reduce its time and cost.Keywords: simulation, massive concreting, discrete event simulation, resource management
Procedia PDF Downloads 1494503 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting
Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula
Abstract:
As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation
Procedia PDF Downloads 4904502 CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator
Authors: Sina Movafagh, Younes Bakhshan
Abstract:
Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator.Keywords: heat transfer, nanofluid, car radiator, CFD simulation
Procedia PDF Downloads 3054501 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 3414500 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement
Authors: Ehan Sabah Shukri, Wirachman Wisnoe
Abstract:
The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases.Keywords: numerical simulation, twist arrangement, annular diffuser, temperature distribution, swirl flow, pitches
Procedia PDF Downloads 4114499 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 524498 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment
Authors: Fathi Alwafie
Abstract:
In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.Keywords: propagation, ray tracing, network, mobile computing
Procedia PDF Downloads 4014497 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine
Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy
Abstract:
This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.Keywords: CFD model, combustion, engine, simulation
Procedia PDF Downloads 3624496 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine
Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan
Abstract:
The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear
Procedia PDF Downloads 1504495 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 3274494 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review
Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos
Abstract:
Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation
Procedia PDF Downloads 1534493 Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis
Authors: Mayada Attia Ibrahim
Abstract:
Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios.Keywords: electroplating process, simulation, design of experiment, performance optimization, theory of constraints, data envelopment analysis
Procedia PDF Downloads 1004492 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 1414491 Supply Air Pressure Control of HVAC System Using MPC Controller
Authors: P. Javid, A. Aeenmehr, J. Taghavifar
Abstract:
In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.Keywords: air conditioning system, GPC, dead time, air supply control
Procedia PDF Downloads 5274490 Business Skills Laboratory in Action: Combining a Practice Enterprise Model and an ERP-Simulation to a Comprehensive Business Learning Environment
Authors: Karoliina Nisula, Samuli Pekkola
Abstract:
Business education has been criticized for being too theoretical and distant from business life. Different types of experiential learning environments ranging from manual role-play to computer simulations and enterprise resource planning (ERP) systems have been used to introduce the realistic and practical experience into business learning. Each of these learning environments approaches business learning from a different perspective. The implementations tend to be individual exercises supplementing the traditional courses. We suggest combining them into a business skills laboratory resembling an actual workplace. In this paper, we present a concrete implementation of an ERP-supported business learning environment that is used throughout the first year undergraduate business curriculum. We validate the implementation by evaluating the learning outcomes through the different domains of Bloom’s taxonomy. We use the role-play oriented practice enterprise model as a comparison group. Our findings indicate that using the ERP simulation improves the poor and average students’ lower-level cognitive learning. On the affective domain, the ERP-simulation appears to enhance motivation to learn as well as perceived acquisition of practical hands-on skills.Keywords: business simulations, experiential learning, ERP systems, learning environments
Procedia PDF Downloads 2604489 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 4264488 Implementation of the Outputs of Computer Simulation to Support Decision-Making Processes
Authors: Jiri Barta
Abstract:
At the present time, awareness, education, computer simulation and information systems protection are very serious and relevant topics. The article deals with perspectives and possibilities of implementation of emergence or natural hazard threats into the system which is developed for communication among members of crisis management staffs. The Czech Hydro-Meteorological Institute with its System of Integrated Warning Service resents the largest usable base of information. National information systems are connected to foreign systems, especially to flooding emergency systems of neighboring countries, systems of European Union and international organizations where the Czech Republic is a member. Use of outputs of particular information systems and computer simulations on a single communication interface of information system for communication among members of crisis management staff and setting the site interoperability in the net will lead to time savings in decision-making processes in solving extraordinary events and crisis situations. Faster managing of an extraordinary event or a crisis situation will bring positive effects and minimize the impact of negative effects on the environment.Keywords: computer simulation, communication, continuity, critical infrastructure, information systems, safety
Procedia PDF Downloads 3344487 Designing Web Application to Simulate Agricultural Management for Smart Farmer: Land Development Department’s Integrated Management Farm
Authors: Panasbodee Thachaopas, Duangdorm Gamnerdsap, Waraporn Inthip, Arissara Pungpa
Abstract:
LDD’s IM Farm or Land Development Department’s Integrated Management Farm is the agricultural simulation application developed by Land Development Department relies on actual data in simulation game to grow 12 cash crops which are rice, corn, cassava, sugarcane, soybean, rubber tree, oil palm, pineapple, longan, rambutan, durian, and mangosteen. Launching in simulation game, players could select preferable areas for cropping from base map or Orthophoto map scale 1:4,000. Farm management is simulated from field preparation to harvesting. The system uses soil group, and present land use database to facilitate player to know whether what kind of crop is suitable to grow in each soil groups and integrate LDD’s data with other agencies which are soil types, soil properties, soil problems, climate, cultivation cost, fertilizer use, fertilizer price, socio-economic data, plant diseases, weed, pest, interest rate for taking on loan from Bank for Agriculture and Agricultural Cooperatives (BAAC), labor cost, market prices. These mentioned data affect the cost and yield differently to each crop. After completing, the player will know the yield, income and expense, profit/loss. The player could change to other crops that are more suitable to soil groups for optimal yields and profits.Keywords: agricultural simulation, smart farmer, web application, factors of agricultural production
Procedia PDF Downloads 1994486 An Assembly Line Designing Study for a Refrigeration Industry
Authors: Emin Gundogar, Burak Erkayman, Aysegul Yilmaz, Nusret Sazak
Abstract:
When considering current competition conditions on the world, satisfying customer demands on time has become an important factor that enables the firms take a step further. Therefore, production process must be completed faster to take the competitive advantage. A balanced assembly line is the one of most important factors affecting the speed of production lines. The aim of this study is to build an assembly line to balance the assembly line and to simulate it for different scenarios through a refrigerator factory. The times of the operations is analyzed and grouped by the priorities. First, a Kilbridge & Wester heuristics is put to the model then a simulation approach is implemented to the model and the differences are observed.Keywords: assembly line design, assembly line balancing, simulation modelling, refrigeration industry
Procedia PDF Downloads 4484485 Design for Filter and Transitions to Substrat Integated Waveguide at Ka Band
Authors: Damou Mehdi, Nouri Keltouma, Fahem Mohammed
Abstract:
In this paper, the concept of substrate integrated waveguide (SIW) technology is used to design filter for 30 GHz communication systems. SIW is created in the substrate of RT/Duroid 5880 having relative permittivity ε_r= 2.2 and loss tangent tanφ = 0.0009. Four Via are placed on the century filter the structures of SIW are modeled using and have been optimized in software HFSS (High Frequency Structure Simulator), à transition is designed for a Ka-band transceiver module with a 28.5GHz center frequency, . and then the results are verified using another simulation CST Microwave Studio (Computer Simulation Technology). The return loss are less than -18 dB, and -13 dB respectively. The insertion loss is divided equally -1.2 dB and -1.4 respectively.Keywords: transition, microstrip, substrat integrated wave guide, filter, via
Procedia PDF Downloads 6574484 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM
Authors: M. J. Davidson, N. Selvaraj, L. Venugopal
Abstract:
The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube
Procedia PDF Downloads 5094483 Train-The-Trainer in Neonatal Resuscitation in Rural Uganda: A Model for Sustainability and the Barriers Faced
Authors: Emilia K. H. Danielsson-Waters, Malaz Elsaddig, Kevin Jones
Abstract:
Unfortunately, it is well known that neonatal deaths are a common and potentially preventable occurrence across the world. Neonatal resuscitation is a simple and inexpensive intervention that can effectively reduce this rate, and can be taught and implemented globally. This project is a follow-on from one in 2012, which found that neonatal resuscitation simulation was valuable for education, but would be better improved by being delivered by local staff. Methods: This study involved auditing the neonatal admission and death records within a rural Ugandan hospital, alongside implementing a Train-The-Trainer teaching scheme to teach Neonatal Resuscitation. One local doctor was trained for simulating neonatal resuscitation, whom subsequently taught an additional 14 staff members in one-afternoon session. Participants were asked to complete questionnaires to assess their knowledge and confidence pre- and post-simulation, and a survey to identify barriers and drivers to simulation. Results: The results found that the neonatal mortality rate in this hospital was 25% between July 2016- July 2017, with birth asphyxia, prematurity and sepsis being the most common causes. Barriers to simulation that were identified predominantly included a lack of time, facilities and opportunity, yet all members stated simulation was beneficial for improving skills and confidence. The simulation session received incredibly positive qualitative feedback, and also a 0.58-point increase in knowledge (p=0.197) and 0.73-point increase in confidence (0.079). Conclusion: This research shows that it is possible to create a teaching scheme in a rural hospital, however, many barriers are in place for its sustainability, and a larger sample size with a more sensitive scale is required to achieve statistical significance. This is undeniably important, because teaching neonatal resuscitation can have a direct impact on neonatal mortality. Subsequently, recommendations include that efforts should be put in place to create a sustainable training scheme, for example, by employing a resuscitation officer. Moreover, neonatal resuscitation teaching should be conducted more frequently in hospitals, and conducted in a wider geographical context, including within the community, in order to achieve its full effect.Keywords: neonatal resuscitation, sustainable medical education, train-the-trainer, Uganda
Procedia PDF Downloads 1524482 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: air defense, effectiveness, system, simulation, decision-support
Procedia PDF Downloads 1574481 Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty
Abstract:
The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water.Keywords: GFRP sheet, sea water, concrete beams, bonding
Procedia PDF Downloads 3234480 Diversity and Utilize of Ignored, Underutilized, and Uncommercialized Horticultural Species in Nepal
Authors: Prakriti Chand, Binayak Prasad Rajbhandari, Ram Prasad Mainali
Abstract:
Local indigenous community in Lalitpur, Nepal, use Ignored, Underutilized and Uncommercialized Horticultural Species (IUUHS) for medicine, food, spice, pickles, and religious purposes. But, research and exploration about usage, status, potentialities, and importance of these future sustainable crops are inadequately documented and have been ignored for a positive food transformation system. The study aimed to assess the use and diversity of NUWHS in terms of current status investigation, documentation, management, and future potentialities of IUUHS. A wide range of participatory tools through the household survey ( 100 respondents), 8 focus group discussions, 20 key informant interviews was followed by individual assessment, participatory rural assessments and supplemented by literature review. This study recorded 95 IUUHS belonging to 43 families, of which 92 were angiosperms, 2 pteridophytes, and 1 gymnosperm. Twenty seven species had multiple uses. The IUUHS observed during the study were 31 vegetables, 20 fruits, 14 wild species, 7 spices, 7 pulses, 7 pickle, 7 medicine, and 2 religious species. Vegetables and fruits were the most observed category of IUUHS. Eighty nine species were observed as medicinally valued species, and 86% of the women had taken over all the agricultural activities. 84% of respondents used these species during food deficient period. IUUHS have future potential as an alternative food to major staple crops due to its remarkable ability to be adapted in marginal soil and thrive harsh climatic condition. There are various constraints regarding the utilization and development of IUUHS, which needs initiation of promotion, utilization, management, and conservation of species from the grass root level.Keywords: agrobiodiversity, Ignored and underutilized species, uncultivated horticultural species, diversity use
Procedia PDF Downloads 271