Search results for: post-industrial textile waste
2601 Advancing Spatial Mapping and Monitoring of Illegal Landfills for Deprived Urban Areas in Romania
Authors: ȘercăIanu Mihai, Aldea Mihaela, Iacoboaea Cristina, Luca Oana, Nenciu Ioana
Abstract:
The emergence and neutralization of illegal waste dumps represent a global concern for waste management ecosystems with a particularly pronounced impact on disadvantaged communities. All over the world, and in this particular case in Romania, a relevant number of people resided in houses lacking any legal forms such as land ownership documents or building permits. These areas are referred to as “informal settlements”. An increasing number of regions and cities in Romania are struggling to manage their waste dumps, especially in the context of increasing poverty and lack of regulation related to informal settlements. An example of such informal settlement can be found at the terminus of Bistra Street in Câlnic, which falls under the jurisdiction of the Municipality of Reșița in Caras Severin County. The article presents a case study that focuses on employing remote sensing techniques and spatial data to monitor and map illegal waste practices, with subsequent integration into a geographic information system tailored for the Reșița community. In addition, the paper outlines the steps involved in devising strategies aimed at enhancing waste management practices in disadvantaged areas, aligning with the shift toward a circular economy. Results presented in the paper contain a spatial mapping and visualization methodology calibrated with in situ data collection applicable for identifying illegal landfills. The emergence and neutralization of illegal dumps pose a challenge in the field of waste management. These approaches, which prove effective where conventional solutions have failed, need to be replicated and adopted more wisely.Keywords: waste dumps, waste management, monitoring, GIS, informal settlements
Procedia PDF Downloads 862600 Evaluation of Modified Asphalt Mixture with Hospital Spun-Bond Waste for Enhanced Crack Resistance
Authors: Ziba Talaeizadeh, Taghi Ebadi
Abstract:
Hospitals and medical centers generate a wide array of infectious waste on a daily basis, leading to pressing environmental concerns associated with proper disposal. Disposable plastic items and spun-bond clothing, commonly made from polypropylene, pose a significant risk of disease transmission, necessitating specialized waste management strategies. Incorporating these materials into bituminous asphalt production offers a potential solution, as it can modify asphalt mixtures and reduce susceptibility to cracking. This study aims to assess the crack resistance of asphalt mixtures modified with hospital spun-bond waste. Asphalt mixtures were prepared using the Marshall method, with spun-bond waste added in varying proportions (5% to 20%). The Semi-Circular Bending (SCB) test was conducted to evaluate asphalt fracture behavior under Mode I loading at controlled speeds of 5, 20, and 50 millimeters per minute and an average temperature of 25°C. Parameters such as fracture energy (FE) and Crack Resistance Index (CRI) were quantified. The results indicate that the addition of 10% to 15% spun-bond polypropylene polymer enhances the performance of the modified mixture, resulting in an 18% increase in fracture energy and an 11% reduction in cracking stiffness compared to the control sample. Further investigations involving factors like compaction level, bitumen type, and aggregate grading are recommended to address medical waste management and mitigate asphalt pavement cracking issues.Keywords: asphalt cracking, hospital waste, semi-circular bending test, spun-bond
Procedia PDF Downloads 582599 The Impact of China’s Waste Import Ban on the Waste Mining Economy in East Asia
Authors: Michael Picard
Abstract:
This proposal offers to shed light on the changing legal geography of the global waste economy. Global waste recycling has become a multi-billion-dollar industry. NASDAQ predicts the emergence of a worldwide 1,296G$ waste management market between 2017 and 2022. Underlining this evolution, a new generation of preferential waste-trade agreements has emerged in the Pacific. In the last decade, Japan has concluded a series of bilateral treaties with Asian countries, and most recently with China. An agreement between Tokyo and Beijing was formalized on 7 May 2008, which forged an economic partnership on waste transfer and mining. The agreement set up International Recycling Zones, where certified recycling plants in China process industrial waste imported from Japan. Under the joint venture, Chinese companies salvage the embedded value from Japanese industrial discards, reprocess them and send them back to Japanese manufacturers, such as Mitsubishi and Panasonic. This circular economy is designed to convert surplus garbage into surplus value. Ever since the opening of Sino-Japanese eco-parks, millions of tons of plastic and e-waste have been exported from Japan to China every year. Yet, quite unexpectedly, China has recently closed its waste market to imports, jeopardizing Japan’s billion-dollar exports to China. China notified the WTO that, by the end of 2017, it would no longer accept imports of plastics and certain metals. Given China’s share of Japanese waste exports, a complete closure of China’s market would require Japan to find new uses for its recyclable industrial trash generated domestically every year. It remains to be seen how China will effectively implement its ban on waste imports, considering the economic interests at stake. At this stage, what remains to be clarified is whether China's ban on waste imports will negatively affect the recycling trade between Japan and China. What is clear, though, is the rapid transformation in the legal geography of waste mining in East-Asia. For decades, East-Asian waste trade had been tied up in an ‘ecologically unequal exchange’ between the Japanese core and the Chinese periphery. This global unequal waste distribution could be measured by the Environmental Stringency Index, which revealed that waste regulation was 39% weaker in the Global South than in Japan. This explains why Japan could legally export its hazardous plastic and electronic discards to China. The asymmetric flow of hazardous waste between Japan and China carried the colonial heritage of international law. The legal geography of waste distribution was closely associated to the imperial construction of an ecological trade imbalance between the Japanese source and the Chinese sink. Thus, China’s recent decision to ban hazardous waste imports is a sign of a broader ecological shift. As a global economic superpower, China announced to the world it would no longer be the planet’s junkyard. The policy change will have profound consequences on the global circulation of waste, re-routing global waste towards countries south of China, such as Vietnam and Malaysia. By the time the Berlin Conference takes place in May 2018, the presentation will be able to assess more accurately the effect of the Chinese ban on the transboundary movement of waste in Asia.Keywords: Asia, ecological unequal exchange, global waste trade, legal geography
Procedia PDF Downloads 2102598 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility
Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata
Abstract:
Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.Keywords: chemical processing facility, medium- and long-term management plan of JAEA facilities, STRAD project, treatment of radioactive waste
Procedia PDF Downloads 1422597 An Appraisal of the Knowledge Attitude and Practice (Kap) on Plastic Waste Pollution as a Resilience Pathway for Mitigating Climate Change Case of Durumi 1 Urban Slum Area of Abuja Nigeria
Authors: Pascal U. Onu, Doris A. Ogbang, Emmanuel Okechukwu.
Abstract:
Background: Plastics in their various forms have become ubiquitous in a very short space of time. This ubiquitous nature has plagued and daunted nations globally, overwhelming their ability to manage the environmental impact, especially its linkages to climate change. This has mobilized nations globally and triggered debates on the best approaches to ensure sustainability in terms of its production and utilization, as total elimination seems unrealistic. Objective: This study undertook to understand the pattern of plastic waste management, and its pollution awareness levels by the residents of the study area. Methods: Data were obtained through questionnaires designed specifically for plastic waste and qualitatively via journals and articles. Simple descriptive survey techniques with a survey population size of 300 respondents using kobo collect were employed. Results: Analysis based on disaggregated data indicated a proportionate distribution among male and female respondents (53% male and 47% female, respectively). Overall awareness levels on plastic waste's contribution to climate change, compared to its environmental impact, are reflective of a dire need for increased efforts in strengthening awareness creation, especially across gender populations and religious backgrounds. Drainage blockage topped the ranks among common problems caused by plastic waste within the area. Various plastic waste disposal methods were ranked, while pro-environmental measures for reducing the waste menace showed more willingness from males at 52%. Conclusion: These outcomes are instructive and suggest the need for renewed and increased awareness/education on the nexus of plastic pollution to climate change and also appropriate synergies/collaboration between government, private sector, and local communities, especially in the area of recycling to improve sustainability in plastic waste management.Keywords: plastic waste, KAP, climate change, Nigeria
Procedia PDF Downloads 402596 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors
Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao
Abstract:
Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff
Procedia PDF Downloads 4672595 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste
Authors: Chayan Gupta, Arun Prasad
Abstract:
The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis
Procedia PDF Downloads 1682594 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band
Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz
Abstract:
This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi
Procedia PDF Downloads 1212593 Managing Construction Wastes in Nigeria for Sustainable Development
Authors: Ezekiel Ejiofor Nnadi
Abstract:
Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site.Keywords: construction cost, construction industry, economic growth, materials wastes
Procedia PDF Downloads 2722592 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns
Procedia PDF Downloads 3032591 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties
Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic
Abstract:
Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.Keywords: nanomaterials, industrial waste, chile, recycling
Procedia PDF Downloads 962590 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption
Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin
Abstract:
Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.Keywords: adsorbent, fly ash, heavy metal, waste
Procedia PDF Downloads 2592589 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University
Authors: Yeraldin Galindo, Soraida Mora
Abstract:
Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas
Procedia PDF Downloads 2582588 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.Keywords: improvement, shear strength, internal friction angle, sandy soil, rubber chip
Procedia PDF Downloads 1452587 A Review on Valorisation of Chicken Feathers: Current Status and Future Prospects
Authors: Tamrat Tesfaye, Bruce Sithole, Deresh Ramjugernath
Abstract:
Worldwide, the poultry–processing industry generates large quantities of feather by-products that amount to 40 billion kilograms annually. The feathers are considered wastes although small amounts are often processed into valuable products such as feather meal and fertilizers. The remaining waste is disposed of by incineration or by burial in controlled landfills. Improper disposal of these biological wastes contributes to environmental damage and transmission of diseases. Economic pressures, environmental pressures, increasing interest in using renewable and sustainable raw materials, and the need to decrease reliance on non-renewable petroleum resources behove the industry to find better ways of dealing with waste feathers. A closer look at the structure and composition of feathers shows that the whole part of a chicken feather (rachis and barb) can be used as a source of a pure structural protein called keratin which can be exploited for conversion into a number of high-value bio products. Additionally, a number of technologies can be used to convert other biological components of feathers into high value added products. Thus, conversion of the waste into valuable products can make feathers an attractive raw material for the production of bio products. In this review, possible applications of chicken feathers in a variety of technologies and products are discussed. Thus, using waste feathers as a valuable resource can help the poultry industry to dispose of the waste feathers in an environmentally sustainable manner that also generates extra income for the industry. Their valorisation can result in their sustainable conversion into high-value materials and products on the proviso of existence or development of cost-effective technologies for converting this waste into the useful products.Keywords: biodegradable product, keratin, poultry waste, feathers, valorisation
Procedia PDF Downloads 2962586 Experimental Study on Recycled Aggregate Pervious Concrete
Authors: Ji Wenzhan, Zhang Tao, Li Guoyou
Abstract:
Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.Keywords: recycled aggregate, permeable concrete, compressive strength, permeability
Procedia PDF Downloads 2242585 Benefit Of Waste Collection Route Optimisation
Authors: Bojana Tot, Goran BošKović, Goran Vujić
Abstract:
Route optimisation is a process of planning one or multiple routes, with the purpose of minimizing overall costs, while achieving the highest possible performance under a set of given constraints. It combines routing or route planning, which is the process of creating the most cost-effective route by minimizing the distance or travelled time necessary to reach a set of planned stops, and route scheduling, which is the process of assigning an arrival and service time for each stop, with drivers being given shifts that adhere to their working hours. The objective of this paper is to provide benefits on the implementation of waste collection route optimisation and thus achieve economic efficiency for public utility companies, better service for citizens and positive environment and health.Keywords: waste management, environment, collection route optimisation, GIS
Procedia PDF Downloads 1602584 Analysis of Flexural Behavior of Wood-Concrete Beams
Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui
Abstract:
This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.Keywords: wood waste ash, characterization, mechanical properties, bending tests
Procedia PDF Downloads 3062583 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 1022582 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand
Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav
Abstract:
Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand
Procedia PDF Downloads 1472581 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites
Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores
Abstract:
In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).Keywords: building waste, CDW, gypsum, recycling, resources
Procedia PDF Downloads 3302580 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application
Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job
Abstract:
In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.Keywords: cell line, chrome, genotoxicity, leather, natural rubber
Procedia PDF Downloads 1962579 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans
Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti
Abstract:
There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material
Procedia PDF Downloads 1302578 Evaluation Criteria for Performance of Knitted Terry Fabrics and Building Elements of Fashion: A Critical Review
Authors: Harpinder Kaur, Amit Madahar
Abstract:
The terry fabric is one of the fastest growing and challenging sub-sectors of the textile industry. Terry fabrics are produced using ground weft, ground warp, and pile yarns. The terry fabrics not only finds applications in towels but also in home textile products, sauna dressing- gowns, slippers, jackets, garments, apparels, outerwears, overcoats, sweatshirts, children’s clothes, and hygiene products for babies, beachwear, sleepwear, gloves, scarfs, shawls, etc. In some cases, these wide ranges of applications not only demand a high degree of absorption but also necessitate the due consideration for the handle properties of the fabrics. These fabrics are required to be accessed for their performance in terms of absorbency and comfort characteristics. Since material (yarns, colors, fabrics, fashion, patrons, accessories and fittings) are the core elements of structure of fashion, hence textile and fashion go hand in hand. This paper throws some light on the performance evaluation of terry fabrics. Here, characteristics/features that are required to be achieved for satisfactory performance of the terry fabrics with reference to fashion are discussed. The terry fabrics are being modified over the years in terms of the raw material requirements such as 100% cotton or blends or cotton with other fibers in order to obtain better performance as well as their structural parameters including stitch length and stitch density etc.Keywords: absorbency, comfort, cotton, performance, terry fabrics, fashion
Procedia PDF Downloads 1462577 The Effect of Pulsator on Washing Performance in a Front-Loading Washer
Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic
Abstract:
The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving
Procedia PDF Downloads 2612576 An Evaluation of Medical Waste in Health Facilities through Data Envelopment Analysis (DEA) Method: Turkey-Amasya Public Hospitals Union Model
Authors: Murat Iskender Aktaş, Sadi Ergin, Rasime Acar Aktaş
Abstract:
In the light of fast-paced changes and developments in the health sector, the Ministry of Health started a new structuring with decree law numbered 663 within the scope of the Project of Transformation in Health. Accordingly, hospitals should ensure patient satisfaction through more efficient, more effective use of resources and sustainable finance by placing patients in the centre and should operate to increase efficiency to its maximum level while doing these. Within this study, in order to find out how efficient the hospitals were in terms of medical waste management between the years 2011-2014, the data from six hospitals of Amasya Public Hospitals Union were evaluated separately through Data Envelopment Analysis (DEA) method. First of all, input variables were determined. Input variables were the number of patients admitted to polyclinics, the number of inpatients in clinics, the number of patients who were operated and the number of patients who applied to the laboratory. Output variable was the cost of medical wastes in Turkish liras. Each hospital’s total medical waste level before and after public hospitals union; the amounts of average medical waste per patient admitted to polyclinics, per inpatient in clinics, per patient admitted to laboratory and per operated patient were compared within each group. In addition, average medical waste levels and costs were compared for Turkey in general and Europe in general. Paired samples t-test was used to find out whether the changes (increase-decrease) after public hospitals union were statistically significant. The health facilities that were unsuccessful in terms of medical waste management before and after public hospital union and the factors that caused this failure were determined. Based on the results, for each health facility that was ineffective in terms of medical waste management, the level of improvement required for each input was determined. The results of the study showed that there was an improvement in medical waste management applications after the health facilities became a member of public hospitals union; their medical waste levels were lower than the average of Turkey and Europe while the averages of cost of disposal were the highest.Keywords: medical waste management, cost of medical waste, public hospitals, data envelopment analysis
Procedia PDF Downloads 4152575 Estimation and Utilization of Landfill Gas from Egyptian Municipal Waste: A Case Study
Authors: Ali A. Hashim Habib, Ahmed A. Abdel-Rehim
Abstract:
Assuredly, massive amounts of wastes that are not utilized and dumped in uncontrolled dumpsites will be one of the major sources of diseases, fires, and emissions. With easy steps and minimum effort, energy can be produced from these gases. The present work introduces an experimental and theoretical analysis to estimate the amount of landfill gas and the corresponding energy which can be produced based on actual Egyptian municipal wastes composition. Two models were utilized and compared, EPA (Environmental Protection Agency) model and CDM (Clean Development Mechanisms) model to estimate methane generation rates and total CH4 emissions based on a particular landfill. The results showed that for every ton of municipal waste, 140 m3 of landfill gas can be produced. About 800 kW of electricity for a minimum of 24 years can be generated form one million ton of municipal waste. A total amount of 549,025 ton of carbon emission can be avoided during these 24 years.Keywords: energy from landfill gases, landfill biogas, methane emission, municipal solid waste, renewable energy sources
Procedia PDF Downloads 2252574 Presence of High Concentrations of Toxic Metals from the Collected Soil Samples Due to Excessive E-Waste Burning in the Various Areas of Moradabad City, U.P India
Authors: Aprajita Singh, Anamika Tripathi, Surya P. Dwivedi
Abstract:
Moradabad is a small town in the Northern area of Uttar Pradesh, India. It is situated on the bank of river Ramganga which is also known as ‘Brass City of India’. There is eventually increase in the environmental pollution due to uncontrolled and inappropriate e-waste burning (recycling) activities which have been reported in many areas of Moradabad. In this paper, analysis of toxic heavy metals, causing pollution to the surrounding environment released from the e-waste burning and much other recycling process. All major e-waste burning sites are situated on the banks of the river which is burned in open environmental conditions. Soil samples were collected from seven (n=3) different sites including control site, after digestion of soil samples using triacid mixture, analysis of different toxic metals (Pb, Ar, Hg, Cd, Cr, Cu, Zn, Fe, and Ni) has been carried out with the help of instrument ICP-AAS. After the study, the outcome is that the soil of those areas contains a relatively high level of the toxic metals in order of Cu>Fe>Pb>Cd>Cr>Zn>Ar>Hg. The concentration of Cd, Pb, Cr, Ar and Zn (the majority of samples experimentally proved) exceeded the maximum standard level of WHO. Sequentially this study showed that uncontrolled e-waste processing operations caused serious pollution to local soil and release of toxic metals in the environment is also causing adverse effect on the health of people living in the nearby areas making them more prone to various harmful diseases.Keywords: brass city, environment pollution, e-waste, toxic heavy metals
Procedia PDF Downloads 3002573 Integrating Best Practices for Construction Waste in Quality Management Systems
Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez
Abstract:
The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems
Procedia PDF Downloads 5332572 LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil
Authors: T. Tommasi, E. Batuecas, G. Mancini, G. Saracco, D. Fino
Abstract:
Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain.Keywords: anaerobic digestion, waste management, agro-food waste, biogas
Procedia PDF Downloads 146