Search results for: methanol steam reformer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 799

Search results for: methanol steam reformer

259 Pharmacokinetic Study of Clarithromycin in Human Female of Pakistani Population

Authors: Atifa Mushtaq, Tanweer Khaliq, Hafiz Alam Sher, Asia Farid, Anila Kanwal, Maliha Sarfraz

Abstract:

The study was designed to assess the various pharmacokinetic parameters of a commercially available clarithromycin Tablet (Klaricid® 250 mg Abbot, Pakistan) in plasma sample of healthy adult female volunteers by applying a rapid, sensitive and accurate HPLC-UV analytical method. The human plasma samples were evaluated by using an isocratic High Performance Liquid Chromatography (HPLC) system of Sykam consisted of a pump with a column C18 column (250×4.6mn, 5µm) UV-detector. The mobile phase comprises of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), methanol and acetonitrile (30:25:45, v/v/v) was delivered with injection volume of 20µL at flow rate of 1 mL/min. The detection was performed at λmax 275 nm. By applying this method, important pharmacokinetic parameters Cmax, Tmax, Area under curve (AUC), half-life (t1/2), , Volume of distribution (Vd) and Clearance (Cl) were measured. The parameters of pharmacokinetics of clarithromycin were calculated by software (APO) pharmacological analysis. Maximum plasma concentrations Cmax 2.78 ±0.33 µg/ml, time to reach maximum concentration tmax 2.82 ± 0.11 h and Area under curve AUC was 20.14 h.µg/ml. The mean ± SD values obtained for the pharmacokinetic parameters showed a significant difference in pharmacokinetic parameters observed in previous literature which emphasizes the need for dose adjustment of clarithromycin in Pakistani population.

Keywords: Pharmacokinetc, Clarothromycin, HPLC, Pakistan

Procedia PDF Downloads 108
258 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: autoclave, disposal, fuel, incineration, medical waste

Procedia PDF Downloads 176
257 Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: ischemia-reperfusion, neuroprotective, stroke, antioxidant

Procedia PDF Downloads 115
256 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 149
255 Evaluation of ROS Mediated Apoptosis Induced by Tuber Extract of Dioscorea Bulbifera on Human Breast Adenocarcinoma

Authors: Debasmita Dubey, Rajesh Kumar Meher, Smruti Pragya Samal, Pradeep Kumar Naik

Abstract:

Background: To determine antioxidant properties and anticancer activity by ROS and mitochondrial transmembrane potential mediated apoptosis against MCF7, MDA-MB-231, cell line. Methods: Leaf sample was extracted using methanol by microwave digestion technique. The antioxidant properties of the methanolic extract were determined by a DPPH scavenging assay. In vitro anticancer activity, mitochondrial transmembrane potential, apoptosis activity and DNA fragmentation study, as well as intracellular ROS activity of most potential leaf extract, were also determined by using the MDA-MB-231cell line. In vivo animal toxicity study was carried out using mice model. Results: Methanolic leaf extract has shown the highest antioxidant, as well as anticancer activity, is based on the assay conducted. For the identification of active phytochemicals from methanolic extract, High-resolution mass spectroscopy-LCMS was used. In vitro cytotoxicity study against MCF-7 and MDA-MB-231 cell line and IC 50 value was found to be 37.5µg/ml. From histopathological studies, no toxicity in liver and kidney tissue was identified. Conclusion: This plant tuber can be used as a regular diet to reduce the chance of breast cancer. Further, more studies should be conducted to isolate and identify the responsible compound.

Keywords: human breast adenocarcinoma, ROS, mitochondrial transmembrane, apoptosis

Procedia PDF Downloads 117
254 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 369
253 In vitro Anti-Gonococcal, Anti-Inflammatory and HIV-1 Reverse Transcriptase Activities of the Herbal Mixture

Authors: T. E. Tshikalange, B. C. Mophuting

Abstract:

Traditional medicine often consists of complex ingredients prepared from a mixture of plant species. These herbal mixtures are used in the treatment of various ailments such as sexually transmitted diseases including HIV. The present study was carried out to determine the biological activities of the herbal mixture used traditionally in the treatment of sexually transmitted diseases. This herbal mixture consists of four plant species from families Asteraceae, Bignoniaceae, Fabaceae, and Myrtaceae. Five crude extracts (hexane, dichloromethane, methanol, water and boiled) of the herbal mixture were investigated for anti-gonococcal, anti-inflammatory, and reverse transcriptase activities. The anti-inflammatory activity of the plant extracts was determined by measuring the extract inhibitory effect on the pro-inflammatory enzyme lipoxygenase. The extracts were also tested for anti-HIV activity against recombinant HIV-1 enzyme using non-radioactive HIV-RT colorimetric assay. The boiled extract exhibited good anti-inflammatory activity with an IC₅₀ of 87 µg/ml compared to that of the positive control quercetin (IC₅₀= 92 µg/ml). All the other extracts showed little or no activity. Hexane extract was the only extract that showed reverse transcriptase extract inhibitory effect with an IC₅₀ of 74 µg/ml. Anti-gonococcal and cytotoxicity investigations are underway. The preliminary results support the use of herbal mixture by traditional healers.

Keywords: sexually transmitted diseases, lipoxygenase, anti-inflammatory, herbal mixture

Procedia PDF Downloads 281
252 Turn Organic Waste to Green Fuels with Zero Landfill

Authors: Xu Fei (Philip) WU

Abstract:

As waste recycling concept been accepted more and more in modern societies, the organic portion of the municipal waste become a sires issue in today’s life. Depend on location and season, the organic waste can bee anywhere between 40-65% of total municipal solid waste. Also composting and anaerobic digestion technologies been applied in this field for years, however both process have difficulties been selected by economical and environmental factors. Beside environmental pollution and risk of virus spread, the compost is not a product been welcomed by people even the waste management has to give up them at no cost. The anaerobic digester has to have 70% of water and keep at 35 degree C or above; base on above conditions, the retention time only can be up to two weeks and remain solid has to be dewater and composting again. The enhancive waste water treatment has to be added after. Because these reasons, the voice of suggesting cancelling recycling program and turning all waste to mass burn incinerations have been raised-A process has already been proved has least energy efficiency and most air pollution problem associated process. A newly developed WXF Bio-energy process employs recently developed and patented pre-designed separation, multi-layer and multi-cavity successive bioreactor landfill technology. It features an improved leachate recycling technology, technologies to maximize the biogas generation rate and a reduced overall turnaround period on the land. A single properly designed and operated site can be used indefinitely. In this process, all collected biogas will be processed to eliminate H2S and other hazardous gases. The methane, carbon dioxide and hydrogen will be utilized in a proprietary process to manufacture methanol which can be sold to mitigate operating costs of the landfill. This integration of new processes offers a more advanced alternative to current sanitary landfill, incineration and compost technology. Xu Fei (Philip) Wu Xu Fei Wu is founder and Chief Scientist of W&Y Environmental International Inc. (W & Y), a Canadian environmental and sustainable energy technology company with patented landfill processes and proprietary waste to energy technologies. He has worked in environmental and sustainable energy fields over the last 25 years. Before W&Y, he worked for Conestoga-Rovers & Associates Limited, Microbe Environmental Science and Technology Inc. of Canada and The Ministry of Nuclear Industry and Ministry of Space Flight Industry of China. Xu Fei Wu holds a Master of Engineering Science degree from The University of Western Ontario. I wish present this paper as an oral presentation only Selected Conference Presentations: • “Removal of Phenolic Compounds with Algae” Presented at 25th Canadian Symposium on Water Pollution Research (CAWPRC Conference), Burlington, Ontario Canada. February, 1990 • “Removal of Phenolic Compounds with Algae” Presented at Annual Conference of Pollution Control Association of Ontario, London, Ontario, Canada. April, 1990 • “Removal of Organochlorine Compounds in a Flocculated Algae Photo-Bioreactor” Presented at International Symposium on Low Cost and Energy Saving Wastewater Treatment Technologies (IAWPRC Conference), Kiyoto, Japan, August, 1990 • “Maximizing Production and Utilization of Landfill Gas” 2009 Wuhan International Conference on Environment(CAWPRC Conference, sponsored by US EPA) Wuhan, China. October, 2009. • “WXF Bio-Energy-A Green, Sustainable Waste to Energy Process” Presented at 9Th International Conference Cooperation for Waste Issues, Kharkiv, Ukraine March, 2012 • “A Lannfill Site Can Be Recycled Indefinitely” Presented at 28th International Conference on solid Waste Technology and Management, Philadelphia, Pennsylvania, USA. March, 2013. Hosted by The Journal of Solid Waste Technology and Management.

Keywords: green fuel, waste management, bio-energy, sustainable development, methanol

Procedia PDF Downloads 277
251 Authenticity of Lipid and Soluble Sugar Profiles of Various Oat Cultivars (Avena sativa)

Authors: Marijana M. Ačanski, Kristian A. Pastor, Djura N. Vujić

Abstract:

The identification of lipid and soluble sugar components in flour samples of different cultivars belonging to common oat species (Avena sativa L.) was performed: spring oat, winter oat and hulless oat. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol). Soluble sugars were then extracted from defatted and dried samples of oat flour with 96% ethanol, and further derivatized into corresponding TMS-oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl)-trifluoroacetamide). The hexane and ethanol extracts of each oat cultivar were analyzed using GC-MS system. Lipid and simple sugar compositions are very similar in all samples of investigated cultivars. Chemometric tool was applied to numeric values of automatically integrated surface areas of detected lipid and simple sugar components in their corresponding derivatized forms. Hierarchical cluster analysis shows a very high similarity between the investigated flour samples of oat cultivars, according to the fatty acid content (0.9955). Moderate similarity was observed according to the content of soluble sugars (0.50). These preliminary results support the idea of establishing methods for oat flour authentication, and provide the means for distinguishing oat flour samples, regardless of the variety, from flour samples made of other cereal species, just by lipid and simple sugar profile analysis.

Keywords: oat cultivars, lipid composition, soluble sugar composition, GC-MS, chemometrics, authentication

Procedia PDF Downloads 295
250 Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model

Authors: Afy Syahidan Achmad

Abstract:

Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface.

Keywords: alteration, advanced argillic, Tangkuban Perahu, XRD, crystobalite, anatase, alunite, pyrite

Procedia PDF Downloads 419
249 Antioxidant and Antimicrobial Activities of Phenolic Extracts of Endemic Plants Marrubium deserti and Ammodaucus leucotrichus from Algeria

Authors: Sifi Ibrahim, Benaddou Fatima Zohra, Yousfi Mohamed

Abstract:

The Marrubium deserti and Ammodaucus leucotrichus L. an Algerian endemic species, has several applications in traditional medicine for example as a remedy for asthma and diabetes, and was found to have antibacterial properties. In this work, an antioxidant and antimicrobial activities was performed on phenolic extracts of Marrubium deserti, Ammodaucus leucotrichus plants. The yield of methanol maceration of these plants is 12.4% and 20.4% respectively. The content of total polyphenols, flavonoids and anthocyanin in methanolic extracts, are varied between 19.52±1.88 and 59.24±3.45 mg/g gallic acid equivalent, and 2.08±0.29 to 1.46±0.39 mg/g quercetin equivalent, and 0.395 to 1.934µmol/g respectively. The total chlorophylls and carotenoids were be ranged from 0.149±0.20 to 1.537±0.20 g/ml and 1.537±0.20 to 0.149 ± 0.20 g/ml, respectively. According to DPPH and FRAP test, the values of EC50 was shows a higher activity of Marrubium deserti than Ammodaucus leucotrichus with EC50 values (DPPH) were 34.53±0.71 μg/mL and 258.60±15.67 mg/ml respectively. The TEAC values of FRAP test was a highly superior for Marrubium deserti 209.66±0.26 mg Equivalent Trolox/g dry residue than Ammodaucus leucotrichus 45.88±2.93 mg Trolox Equivalent/g dry residue. The antimicrobial activity against nine strains of bacteria (Staphylococcus aureus(+), Staphylococcus aureus (-), Bacillus cereus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), was showed that the tested extracts are a significant antibacterial activity with inhibition zones ranging from 10 to 50 mm. the value of CMI were ranging from 0.89 to 14.29 mg/ml.

Keywords: phenolic extract, antioxidant activity, antimicrobial activity, Marrubium deserti, Ammodaucus leucotrichus

Procedia PDF Downloads 395
248 Copper (II) Complex of New Tetradentate Asymmetrical Schiff Base Ligand: Synthesis, Characterization, and Catecholase-Mimetic Activity

Authors: Cahit Demetgul, Sahin Bayraktar, Neslihan Beyazit

Abstract:

Metalloenzymes are enzyme proteins containing metal ions, which are directly bound to the protein or to enzyme-bound nonprotein components. One of the major metalloenzymes that play a key role in oxidation reactions is catechol oxidase, which shows catecholase activity i.e. oxidation of a broad range of catechols to quinones through the four-electron reduction of molecular oxygen to water. Studies on the model compounds mimicking the catecholase activity are very useful and promising for the development of new, more efficient bioinspired catalysts, for in vitro oxidation reactions. In this study, a new tetradentate asymmetrical Schiff-base and its Cu(II) complex were synthesized by condensation of 4-nitro-1,2-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Cu(II) salt, respectively. The prepared compounds were characterized by elemental analysis, FT-IR, NMR, UV-Vis and magnetic susceptibility. The catecholase-mimicking activity of the new Schiff Base Cu(II) complex was performed for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in methanol at 25 °C, where the electronic spectra were recorded at different time intervals. The yield of the quinone (3,5-DTBQ) was determined from the measured absorbance at 400 nm of the resulting solution. The compatibility of catalytic reaction with Michaelis-Menten kinetics was also investigated. In conclusion, we have found that our new Schiff Base Cu(II) complex presents a significant capacity to catalyze the oxidation reaction of the catechol to o-quinone.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 309
247 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 138
246 Geopolymer Concrete: A Review of Properties, Applications and Limitations

Authors: Abbas Ahmed Albu Shaqraa

Abstract:

The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.

Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength

Procedia PDF Downloads 221
245 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Varinder Singh

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: allium cepa, cerebral ischemia, memory, sensorimotor

Procedia PDF Downloads 114
244 Effect of Microwave Radiations on Natural Dyes’ Application on Cotton

Authors: Rafia Asghar, Abdul Hafeez

Abstract:

The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength.

Keywords: dyes, natural dyeing, ecofriendly dyes, microwave treatment

Procedia PDF Downloads 690
243 Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey

Authors: Sengul Uysal, Gokhan Zengin, Abdurrahman Aktumsek, Sukru Karatas

Abstract:

In this research, we determined the total sugar content, fatty acid compositions and α-amylase and α-glucosidase inhibitory activity of methanolic and water extracts of nine different fruit tree leaves. α-amylase and α-glycosidase inhibitory activity were determined by using Caraway-Somogyi–iodine/potassium iodide (IKI) and 4-nitrophenyl-α-D-glucopyranoside (PNPG) as substrate, respectively. Total sugar content of the nine different fruit tree leaves varies from 281.02 mg GE/g (glucose equivalents) to 643.96 mg GE/g. Methanolic extract from avocado leaves had the strongest in α-amylase and α-glucosidase inhibitory activity, 69.21% and 96.26 %, respectively. Fatty acid composition of nine fruit tree leaves was characterized by GC (gas chromatography) and twenty-four components were identified. Among the tested fruit tree leaves, the main component was linolenic acid (49.09%). The level of essential fatty acids are over 50% in mulberry, grape and loquat leaves. PUFAs (polyunsaturated fatty acids) were major group of fatty acids present in oils of mulberry, fig, pomegranate, grape, and loquat leaves. Therefore, these oils can be considered as a good source of polyunsaturated fatty acids. Furthermore, avocado can be regarded as a new source for diabetic therapies.

Keywords: fatty acid compositions, total sugar contents, α-amylase, α-glucosidase, fruit tree leaves, Turkey

Procedia PDF Downloads 486
242 Allelopathic Effect of Foliar Extracts of Leucaena leucocephala on Germination and Growth Behavior of Zea mays L.

Authors: Guru Prasad Satsangi, Shiv Shankar Gautam

Abstract:

Allelopathy is a potential area of research for sustainable agriculture. It is environmentally safe, can conserve the available resources, and also may mitigate the problems raised by synthetic chemicals. The allelo-chemicals are secondary metabolites produced by plants, which are the byproducts of the primary metabolic process. These allelo-chemicals may be stimulatory, inhibitory, or may have no effect on the growth of the other plants. It has been observed in the present study that foliar extracts of Leucaena leucocephala showed an inhibitory effect on the germination of the test crop maize. The results revealed that at different concentrations of Leucaena leucocephala foliar extract, caused a significant inhibition in germination and growth behavior of Zea mays L. seedlings. Minimum germination and growth occurred in 100 % concentration, and an increase in extract concentrations result in a decrease in the germination. Bioassay also depicted that this inhibitory effect was proportional to the concentration of the extract as the higher concentration having a lesser stimulatory effect or vice versa. The phytochemical analysis of the secondary metabolites from foliar extracts of Leucaena leucocephala L. showed the presence of tannins, saponins, phenols, alkaloids, and flavanoids. Among various extracts, the presence of methanol extract was found in a significant amount of phytochemicals, followed by the aqueous and ethanol extracts. Leaves showed a significantly higher amount of the allelochemicals.

Keywords: allelopathic effect, germination /growth behavior , foliar extracts, Leucaena leucceophala , Zea mays L.

Procedia PDF Downloads 200
241 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 425
240 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission

Authors: V. Mentl, V. Koula, P. Mazal, J. Volák

Abstract:

Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.

Keywords: fatigue, crack growth rate, acoustic emission, material damage

Procedia PDF Downloads 371
239 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds

Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed

Abstract:

The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.

Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds

Procedia PDF Downloads 219
238 Tracking of Linarin from the Ethyl Acetate Fraction of Melinjo (Gnetum gnemon L.) Seeds Using Preparative High Performance Liquid Chromatography

Authors: Asep Sukohar, Ramadhan Triyandi, Muhammad Iqbal, Sahidin, Suharyani

Abstract:

Introduction: Resveratrol is a class of bioactive chemicals found in melinjo, which has a wide range of biological actions. The purpose of this study is to determine the linarin content of the melinjo fraksi by using preparative-high-performance liquid chromatography (prep-HPLC). Method: Extraction used the soxhletation method with 96% ethanol solvent. Fractionation used ethyl acetate and ethanol in a ratio of 1:1. Tracing of linarin compound used prep-HPLC with a mobile phase ratio of distilled water: methanol (55: 45, v/v). The presence of linarin was detected using a wavelength of 215 nm. Fourier Transform Infrared (FTIR) was used to identify the functional groups of compound. Result: The retention time required to elute the ethyl acetate fraction was 2.601 minutes. Compound separation identification using Fourier Transform Infrared Spectroscopy - Quest Attenuated Total Reflectance (FTIR - QATR) has a similarity value range with standards from 0 to 1000. The elution results of the ethyl acetate fraction have similar values with the standard compounds linarin (668), resveratrol (578), and catechin (455). Conclusion: Tracing for active compound in the ethyl acetate fraction of Gnetum Gnemon L. using prep-HPLC showed a strong suspicion of the presence of linarin compound.

Keywords: Gnetum gnemon L., linarin, prep-HPLC, fraction ethyl acetate

Procedia PDF Downloads 116
237 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)

Authors: E. Kayitesi, S. Moyo, V. Mavumengwana

Abstract:

Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.

Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties

Procedia PDF Downloads 169
236 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia

Authors: Tiah Rachmatiah, Subaryanti

Abstract:

Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.

Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia

Procedia PDF Downloads 426
235 Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)

Authors: U. Pangnakorn, S. Kanlaya

Abstract:

The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method.

Keywords: housefly (Musca domestica L.), neem seed (Azadirachta indica), citronella grass (Cymbopogon nardus), yam bean seed (Pachyrhizus erosus), mortality

Procedia PDF Downloads 341
234 Antioxidant Properties and Nutritive Value of Raw and Cooked Pool barb (Puntius sophore) of Eastern Himalayas

Authors: Chungkham Sarojnalini, Wahengbam Sarjubala Devi

Abstract:

Antioxidant properties and nutritive values of raw and cooked Pool barb, Puntius sophore (Hamilton-Buchanan) of Eastern Himalayas, India were determined. Antioxidant activity of the methanol extract of the raw, steamed, fried and curried Pool barb was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. In DPPH scavenging assay the IC50 value of the raw, steamed, fried and curried Pool barb was 1.66 microgram/ml, 16.09 microgram/ml, 8.99 microgram/ml, 0.59 microgram/ml whereas the IC50 of the reference ascorbic acid was 46.66 microgram/ml. This results shows that the fish have high antioxidant activity. Protein content was found highest in raw (20.50±0.08%) and lowest in curried (18.66±0.13%). Moisture content in raw, fried and curried was 76.35±0.09, 46.27±0.14 and 57.46±0.24 respectively. Lipid content was recorded 2.46±0.14% in raw and 21.76±0.10% in curried. Ash content varies from 12.57±0.11 to 22.53±0.07%. The total aminoacids were varied from 36.79±0.02 and 288.43±0.12 mg/100 g. Eleven essential mineral elements were found abundant in all the samples. The samples had a considerable amount of Fe ranging from 152.17 to 320.39 milligram/100 gram, Ca 902.06 to 1356.02 milligram/100 gram, Zn 91.07 to 138.14 milligram/100 gram, K 193.25 to 261.56 milligram/100 gram, Mg 225.06 to 229.10 milligram/100 gram. Ni was not detected in the curried fish. The Mg and K contents were significantly decreased in frying method; however the Fe, Cu, Ca, Co and Mn content were increased significantly in all the cooked samples. The Mg and Na contents were significantly increased in curried sample and the Cr content was decreased significantly (p<0.05) in all the cooked samples.

Keywords: antioxidant property, pool barb, minerals, aminoacids, proximate composition, cooking methods

Procedia PDF Downloads 222
233 Review of Sulfur Unit Capacity Expansion Options

Authors: Avinashkumar Karre

Abstract:

Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.

Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit

Procedia PDF Downloads 125
232 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens

Authors: Anupalli Roja Rani, Saraswathi Jaggali

Abstract:

Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.

Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy

Procedia PDF Downloads 500
231 Biodiesel Production Using Eggshells as a Catalyst

Authors: Ieva Gaide, Violeta Makareviciene

Abstract:

Increasing environmental pollution is caused by various factors, including the usage of vehicles. Legislation is focused on the increased usage of renewable energy sources for fuel production. Electric car usage is also important; however, it is relatively new and expensive transport. It is necessary to increase the amount of renewable energy in the production of diesel fuel, whereas many agricultural machineries are powered by diesel, as are water vehicles. For this reason, research on biodiesel production is relevant. The majority of studies globally are related to the improvement of conventional biofuel production technologies by applying the transesterification process of oil using alcohol and catalyst. Some of the more recent methods to produce biodiesel are based on heterogeneous catalysis, which has the advantage of easy separation of catalyst from the final product. It is known that a large amount of eggshells is treated as waste; therefore, it is eliminated in landfills without any or with minimal pre-treatment. CaO, which is known as a good catalyst for biodiesel synthesis, is a key component of eggshells. In the present work, we evaluated the catalytic efficiency of eggshells and determined the optimal transesterification conditions to obtain biodiesel that meets the standards. Content CaO in eggshells was investigated. Response surface methodology was used to determine the optimal reaction conditions. Three independent variables were investigated: the molar ratio of alcohol to oil, the amount of the catalyst, and the duration of the reaction. It was obtained that the optimum transesterification conditions when the methanol and eggshells as a heterogeneous catalyst are used and the process temperature is 64°C are the following: the alcohol-to-oil molar ratio 10.93:1, the reaction duration 9.48 h, and the catalyst amount 6.80 wt%. Under these conditions, 97.79 wt% of the ester yield was obtained.

Keywords: heterogeneous catalysis, eggshells, biodiesel, oil

Procedia PDF Downloads 120
230 Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design

Authors: Saurabh Satija, Munish Garg

Abstract:

Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world.

Keywords: berberine, microwave, optimization, Taguchi

Procedia PDF Downloads 345