Search results for: metal ion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5831

Search results for: metal ion detection

5291 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 127
5290 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 118
5289 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis

Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan

Abstract:

Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.

Keywords: silver nanoparticles, dithizone, DFT, NMR

Procedia PDF Downloads 214
5288 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 454
5287 Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Dao Chu

Abstract:

The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources.

Keywords: heavy metals, stream water, irrigation, industry

Procedia PDF Downloads 405
5286 Real-Time Pothole Detection Using YOLOv11

Authors: Kosuri Harshitha Durga, Ritesh Yaduwanshi

Abstract:

Potholes are one of the most significant problems that affect road safety and the quality of infrastructure. The aim of pothole detection using OpenCV is to design an automated system that will detect and create a map of potholes on the road surfaces to improve the safety of roads and ease the maintenance process. This system is based on high-powered computer vision methods that use still images or video footage taken by cameras located in cars or drones. This paper presents an analysis of the implementation of the YOLOv11 model in pedestrian detection and demonstrates greater effectiveness of this method in regards to accuracy, speed, and efficiency of inference. The improved system now supports enhanced prompt diagnosis and timely repair leaving little or no damage on the infrastructure and also ensuring that enhanced road safety is achieved. This technology can also be used as a safety feature for the car itself by being installed in ADAS systems that would alert drivers in real-time while driving to avoid driving over potholes.

Keywords: deep learning, Potholes, segmentation, object detection, YOLO

Procedia PDF Downloads 15
5285 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion

Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen

Abstract:

Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.

Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion

Procedia PDF Downloads 95
5284 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking

Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu

Abstract:

Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.

Keywords: Chirality, detection, molecule, spin

Procedia PDF Downloads 96
5283 Removal of Metal Ions (II) Using a Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets

Authors: Laroussi Chaabane, Emmanuel Beyou, Amel El Ghali, Mohammed Hassen V. Baouab

Abstract:

The functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished followed by the grafting of bis(2-pyridylmethyl)amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) produced the martial [(Go-EDA-CAC)-BPED]. The physic-chemical properties of [(Go-EDA-CAC)-BPED] composites were investigated by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPs), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). Moreover, [(Go-EDA-CAC)-BPED] was used for removing M(II) (where M=Cu, Ni and Co) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature were investigated. More importantly, the [(Go-EDA-CAC)-BPED] adsorbent exhibited remarkable performance in capturing heavy metal ions from water. The maximum adsorption capacity values of Cu(II), Ni(II) and Co(II) on the [(GO-EDA-CAC)-BPED] at the pH of 7 is 3.05 mmol.g⁻¹, 3.25 mmol.g⁻¹ and 3.05 mmol.g⁻¹ respectively. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the three metal ions adsorption by [(Go-EDA-CAC)-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossensadsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)-BPED], their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of metal ions (Cu(II), Ni(II) and Co(II) from water solution. Based on the results obtained, we conclude that [(Go-EDA-CAC)-BPED] can be an effective and potential adsorbent for removing metal ions from an aqueous solution.

Keywords: graphene oxide, bis(2-pyridylmethyl)amino, adsorption kinetics, isotherms

Procedia PDF Downloads 137
5282 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 89
5281 Synthesis and Characterization of Heterogeneous Silver Nanoparticles for Protection of Ancient Egyptian Artifacts from Microbial Deterioration

Authors: Mohamed Abd Elfattah Ibraheem Elghrbawy

Abstract:

Biodeterioration of cultural heritage is a complex process which is caused by the interaction of many physical, chemical and biological agents; the growth of microorganisms can cause staining, cracking, powdering, disfigurement and displacement of monuments material, which leads to the permanent loss of monuments material. Organisms causing biodeterioration on monuments have usually been controlled by chemical products (biocides). In order to overcome the impact of biocides on the environment, human health and monument substrates, alternative tools such as antimicrobial agents from natural products can be used for monuments conservation and protection. The problem is how to formulate antibacterial agents with high efficiency and low toxicity. Various types of biodegradable metal nanoparticles (MNPs) have many applications in plant extract delivery. So, Nano-encapsulation of metal and natural antimicrobial agents using polymers such as chitosan increases their efficacy, specificity and targeting ability. Green synthesis and characterization of metal nanoparticles such as silver with natural products extracted from some plants having antimicrobial properties, using the ecofriendly method one pot synthesis. Encapsulation of the new synthesized mixture using some biopolymers such as chitosan nanoparticles. The dispersions and homogeneity of the antimicrobial heterogeneous metal nanoparticles encapsulated by biopolymers will be characterized and confirmed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Zeta seizer. The effect of the antimicrobial biopolymer metal nano-formulations on normal human cell lines will be investigated to evaluate the environmental safety of these formulations. The antimicrobial toxic activity of the biopolymeric antimicrobial metal nanoparticles formulations will be will be investigated to evaluate their efficiency towards different pathogenic bacteria and fungi.

Keywords: antimicrobial, biodeterioration, chitosan, cultural heritage, silver

Procedia PDF Downloads 85
5280 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 264
5279 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 117
5278 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan

Abstract:

In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 468
5277 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 402
5276 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 264
5275 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass

Authors: Mingizem Gashaw Seid

Abstract:

Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.

Keywords: chromium, phytoremediation, tannery effluent, vetiver grass

Procedia PDF Downloads 418
5274 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 124
5273 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 395
5272 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)

Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil

Abstract:

Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.

Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles

Procedia PDF Downloads 234
5271 Protective Approach of Mentha Piperita against Cadmium Induced Renotoxicity in Albino Rats

Authors: Baby Tabassum, Priya Bajaj

Abstract:

Cadmium is the second most hazardous heavy metal occurring in both elemental as well as compound forms. It is a highly toxic metal with a very high bio-concentration factor (BCF>100). WHO permitted groundwater cadmium concentration is 0.005 mg/L only, but reality is far away from this limit. A number of natural and anthropogenic industrial activities contribute to the spread of cadmium into the environment. The present study had been designated to find out the renal changes at functional level after cadmium intoxication and protection against these changes offered by Mentha piperata. For the purpose, albino rats were selected as the model organism. Cadmium significantly increases the serum level of serum proteins and nitrogenous wastes showing reduced filtration rate of kidneys. Pretreatment with Mentha piperata leaf extract causes significant retention of these levels to normalcy. These findings conclude that Cadmium exposure affects renal functioning but Mentha could prevent it, proving its nephro-protective potential against heavy metal toxicity.

Keywords: albino rat, cadmium, Mentha piperata, nephrotoxicity

Procedia PDF Downloads 405
5270 Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings

Authors: M. A. El-Sayed, S. A. Aziz

Abstract:

Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties.

Keywords: centrifugal casting, rotational speed, critical speed range, mechanical properties

Procedia PDF Downloads 449
5269 Investigation of Al/Si, Au/Si and Au/GaAs Interfaces by Positron Annihilation Spectroscopy

Authors: Abdulnasser S. Saleh

Abstract:

The importance of metal-semiconductor interfaces comes from the fact that most electronic devices are interconnected using metallic wiring that forms metal–semiconductor contacts. The properties of these contacts can vary considerably depending on the nature of the interface with the semiconductor. Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si, and Au/GaAs structures. A computational modeling by ROYPROF program is used to analyze Doppler broadening results in order to determine kinds of regions that positrons are likely to sample. In all fittings, the interfaces are found 1 nm thick and act as an absorbing sink for positrons diffusing towards them and may be regarded as highly defective. Internal electric fields were found to influence positrons diffusing to the interfaces and unable to force them cross to the other side. The materials positron affinities are considered in understanding such motion. The results of these theoretical fittings have clearly demonstrated the sensitivity of interfaces in any fitting attempts of analyzing positron spectroscopy data and gave valuable information about metal-semiconductor interfaces.

Keywords: interfaces, semiconductor, positron, defects

Procedia PDF Downloads 264
5268 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 158
5267 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 228
5266 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM

Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na

Abstract:

Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).

Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor

Procedia PDF Downloads 435
5265 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 166
5264 Barrier Lowering in Contacts between Graphene and Semiconductor Materials

Authors: Zhipeng Dong, Jing Guo

Abstract:

Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.

Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts

Procedia PDF Downloads 305
5263 The Effects of Wood Ash on Ignition Point of Wood

Authors: K. A. Ibe, J. I. Mbonu, G. K. Umukoro

Abstract:

The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well.

Keywords: ash, fire, ignition point, retardant, wood saw dust

Procedia PDF Downloads 393
5262 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 379