Search results for: high performance liquid chromatography (HPLC)
29736 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan
Authors: Abdulmannan Fadel
Abstract:
Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran
Procedia PDF Downloads 41529735 Establishment and Improvement of Oil Palm Liquid Culture for Clonal Propagation
Authors: Mohd Naqiuddin Bin Husri, Siti Rahmah Abd Rahman, Dalilah Abu Bakar, Dayang Izawati Abang Masli, Meilina Ong Abdullah
Abstract:
A serious shortage of prime agricultural land coupled with environmental concerns inland expansion has daunted efforts to increase the national yield average. To address this issue, maximising yield per unit hectare through quality planting material is of great importance. Breeding for improved planting materials has been a continuous effort since the early days of this industry, it is time-consuming, and the likelihood of segregation within the progenies further impedes progress in this area. Incorporation of the cloning technology in oil palm breeding programmes is therefore advantageous to expedite the development of commercial elite and high-yielding planting materials. After more than 22 years of research and development through this project, reliable protocols for liquid/suspension culture systems coupled with various innovative technologies which are effective at promoting proliferation and growth of oil palm culture have been established. Subsequently, clonal palms derived from the suspension culture system were extensively studied in the field, and the results have been encouraging. Clones such as CPS1, CPS2 and a few others recorded superior performance in comparison with D x P standard crosses.Keywords: tissue culture, suspension culture, oil palm, Elaeis guineensis
Procedia PDF Downloads 19029734 Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants
Authors: Robert van Ling, Alexander Schwahn, Shanhua Lin, Ken Cook, Frank Steiner, Rowan Moore, Mauro de Pra
Abstract:
Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput.Keywords: charge variants, ion exchange chromatography, monoclonal antibody, UHPLC
Procedia PDF Downloads 44029733 CO₂ Capture by Membrane Applied to Steel Production Process
Authors: Alexandra-Veronica Luca, Letitia Petrescu
Abstract:
Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production
Procedia PDF Downloads 29129732 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers
Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion
Abstract:
Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law
Procedia PDF Downloads 15129731 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization
Authors: Cheng-Jui Li, Chien-Chou Tseng
Abstract:
This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray
Procedia PDF Downloads 28429730 Degradation of Poly -β- Hydroxybutyrate by Trichoderma asperellum
Authors: Nuha Mansour Alhazmi
Abstract:
Replacement of petro-based plastics by a biodegradable plastic are vastly growing process. Poly-β-hydroxybutyrate (PHB) is a biodegradable biopolymer, synthesized by some bacterial genera. The objective of the current study is to explore the ability of some fungi to biodegrade PHB. The degradation of (PHB) was detected in Petri dish by the formation of a clear zone around the fungal colonies due to the production of depolymerase enzyme which has an interesting role in the PHB degradation process. Among 10 tested fungi, the most active PHB biodegraded fungi were identified as Trichoderma asperellum using morphological and molecular characters. The highest PHB degradation was at 25°C, pH 7.5 after 7 days of incubation for the tested fungi. Finally, the depolymerase enzyme was isolated, purified using column chromatography and characterized. In conclusion, PHB can be biodegraded in solid and liquid medium using depolymerase enzyme from T. asperellum.Keywords: degradation, depolymerase enzyme, PHB, Trichoderma asperellum
Procedia PDF Downloads 18129729 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis
Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty
Abstract:
Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy
Procedia PDF Downloads 14229728 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 40029727 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues
Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero
Abstract:
Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic
Procedia PDF Downloads 13429726 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology
Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi
Abstract:
The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method
Procedia PDF Downloads 25529725 Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles
Authors: Mohamed Khedr, Ahmed Farghali, Waleed El Rouby, Abdelrhman Hamdeldeen
Abstract:
Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-.Keywords: CeO2, doped CeO2, photocatalysis, methylene blue
Procedia PDF Downloads 32829724 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single bubbles, electric field, boiling, effect
Procedia PDF Downloads 27029723 Liquid Bridges in a Complex Geometry: Microfluidic Drop Manipulation Inside a Wedge
Authors: D. Baratian, A. Cavalli, D. van den Ende, F. Mugele
Abstract:
The morphology of liquid bridges inside complex geometries is the subject of interest for many years. These efforts try to find stable liquid configuration considering the boundary condition and the physical properties of the system. On the other hand precise manipulation of droplets is highly significant in many microfluidic applications. The liquid configuration in a complex geometry can be switched by means of external stimuli. We show manipulation of droplets in a wedge structure. The profile and position of a drop in a wedge geometry has been calculated analytically assuming negligible contact angle hysteresis. The characteristic length of liquid bridge and its interfacial tension inside the surrounding medium along with the geometrical parameters of the system determine the morphology and equilibrium position of drop in the system. We use electrowetting to modify one the governing parameters to manipulate the droplet. Electrowetting provides the capability to have precise control on the drop position through tuning the voltage and consequently changing the contact angle. This technique is employed to tune drop displacement and control its position inside the wedge. Experiments demonstrate precise drop movement to its predefined position inside the wedge geometry. Experimental results show promising consistency as it is compared to our geometrical model predictions. For such a drop manipulation, appealing applications in microfluidics have been considered.Keywords: liquid bridges, microfluidics, drop manipulation, wetting, electrowetting, capillarity
Procedia PDF Downloads 47729722 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography
Authors: Sudhanshu Sharma
Abstract:
Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.Keywords: lisnopril, surfactant, chromatography, micellar solutions
Procedia PDF Downloads 36729721 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis
Authors: Milind Anurag
Abstract:
This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency
Procedia PDF Downloads 5429720 Application of extraction chromatography to the separation of Sc, Zr and Sn isotopes from target materials
Authors: Steffen Happel
Abstract:
Non-standard isotopes such as Sc-44/47, Zr-89, and Sn-117mare finding interest is increasing in radiopharmaceutical applications. Methods for the separation of these elements from typical target materials were developed. The methods used in this paper are based on the use of extraction chromatographic resins such as UTEVA, TBP, and DGA resin. Information on the selectivity of the resins (Dw values of selected elements in HCl and HNO3 of varying concentration) will be presented as well as results of the method development such as elution studies, chemical recoveries, and decontamination factors. Developed methods are based on the use of vacuum supported separation allowing for fast and selective separation.Keywords: elution, extraction chromatography, radiopharmacy, decontamination factors
Procedia PDF Downloads 46829719 Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation
Authors: Mohamad Saberi, Arash Sohrabi
Abstract:
Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.Keywords: TLD, seismic table, structural system, Hunzer linear behaviour
Procedia PDF Downloads 37829718 Psychological Capital and Work Engagement as Predictors of Employee Performance in a Technology Industry During COVID-19 Pandemic: Basis for Performance Management
Authors: Marion Francisco
Abstract:
The study sought to investigate the psychological capital and work engagement of employees as predictors of employee performance in the technology industry in Makati City. It made used of a descriptive correlational method of research and utilized standardized tests, such as Psychological Capital Scale, Utrech Work Engagement Scale, and Employee Performance Scale. A convenience sampling technique was used to gather data samples from 100 populations with the help of Roscoe concept approach. The study revealed that both psychological capital and work engagement have a significant relationship with employee performance. Psychological capital and work engagement can predict employee performance of the respondents. With the results given, the study suggests: (1) to focus on maintaining a high level of psychological capital and work engagement, on achieving a very high level of psychological capital and work engagement, and on improving the low level of psychological capital or work engagement mostly during this COVID-19 pandemic using the proposed employee performance management plan and (2) to create a proposed employee performance management plan as necessary to tailor fit on employees needs to enhance their performance that will help meet company and client’s needs.Keywords: employee performance, performance management, psychological capital, technology industry, work engagement
Procedia PDF Downloads 11229717 Vitrification-Based Cryopreservation of Phalaenopsis cornu-Cervi (Breda) Blume & Rchb. f. Protocorms
Authors: Suphat Rittirat, Sutha Klaocheed, Somporn Prasertsongskun, Kanchit Thammasiri
Abstract:
Protocorms of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. f. were successfully cryopreserved using a vitrification method. Two-month old protocorms at GI 4 stage were precultured in liquid MS medium supplemented with different concentrations of sucrose (0.3, 0.5, 0.7, 0.9 and 1.2 M) at 25±1°C for 2 days on an orbital shaker at 110 rpm. The protocorms were treated with loading solution (2 M glycerol plus 0.4 M sucrose) for 20 minutes at 25±1°C. Then, the protocorms were sufficiently dehydrated with vitrification solution (plant vitrification solution 2, PVS2) for various times (0, 30, 60, 90 and 120 minutes) at 25±1°C and stored in liquid nitrogen for 1 day. After rapid thawing in water bath at 40°C for 2 minutes, the explants were washed by MS liquid medium containing 0.5 ml of 1.2 M sucrose for 20 minutes. The results shown that the protocorms were precultured in liquid MS medium containing 0.5 M sucrose and dehydrated with vitrification solution for 60 minutes had the highest survival percentage of protocorm at 31±1.0 % as measured by Evan’s blue. No survival rate of protocorms was found without vitrification treatments.Keywords: protocorms, cryopreservation, Phalaenopsis cornu-cervi, vitrification
Procedia PDF Downloads 36329716 Haematological Correlates of Ischemic Stroke and Transient Ischemic Attack: Lessons Learned
Authors: Himali Gunasekara, Baddika Jayaratne
Abstract:
Haematological abnormalities are known to cause Ischemic Stroke or Transient Ischemic Attack (TIA). The identification of haematological correlates plays an important role in a management and secondary prevention. The objective of this study was to describe haematological correlates of stroke and their association between stroke profile. The haematological correlates screened were Lupus Anticoagulant, Dysfibroginemia, Paroxysmal nocturnal haemoglobinurea (PNH), Sickle cell disease, Systemic Lupus Erythematosis (SLE) and Myeloploriferative Neoplasms (MPN). A cross sectional descriptive study was conducted in a sample of 152 stroke patients referred to haematology department of National Hospital of Sri Lanka for thrombophilia screening. Different tests were performed to assess each hematological correlate. Diluted Russels Viper Venom Test and Kaolin clotting time were done to assess Lupus anticoagulant. Full blood count (FBC), blood picture, Sickling test and High Performance Liquid Chromatography were the tests used for detection of Sickle cell disease. Paroxysmal nocturnal haemoglobinurea was assessed by FBC, blood picture, Ham test and Flowcytometry. FBC, blood picture, Janus Kinase 2 (V617F) mutation analysis, erythropoietin level and bone marrow examination were done to look for the Myeloproliferative neoplasms. Dysfibrinogenaemia was assessed by TT, fibrinogen antigen test, clot observation and clauss test. Anti nuclear antibody test was done to look for systemic lupus erythematosis. Among study sample, 134 patients had strokes and only 18 had TIA. The recurrence of stroke/TIA was observed in 13.2% of patients. The majority of patients (94.7%) have had radiological evidence of thrombotic event. One fourth of patients had past thrombotic events while 12.5% had family history of thrombosis. Out of haematological correlates screened, Lupus anticoagulant was the commonest haematological correlate (n=16 ) and dysfibrigonaemia(n=11 ) had the next high prevalence. One patient was diagnosed with Essential thrombocythaemia and one with SLE. None of the patients were positive for screening tests done for sickle cell disease and PNH. The Haematological correlates were identified in 19% of our study sample. Among stroke profile only presence of past thrombotic history was statistically significantly associated with haematological disorders (P= 0.04). Therefore, hematological disorders appear to be an important factor in etiological work-up of stroke patients particularly in patients with past thrombotic events.Keywords: stroke, transient ischemic attack, hematological correlates, hematological disorders
Procedia PDF Downloads 23629715 Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact
Authors: Hidayatul Fitri, Petr Šařec
Abstract:
The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity.Keywords: liquid organic fertilizer, digestate, application, ammonia, emission
Procedia PDF Downloads 28729714 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet
Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin
Abstract:
Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets
Procedia PDF Downloads 39129713 Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry
Authors: Juni C. Kim, Anna R. Robuck, Douglas I. Walker
Abstract:
The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease.Keywords: exposome, metabolome, computational metabolomics, high-resolution mass spectrometry, exposure, pollutants
Procedia PDF Downloads 13829712 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 42429711 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture
Authors: Rouzbeh Ramezani, Renzo Di Felice
Abstract:
Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity
Procedia PDF Downloads 28429710 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination
Authors: Sinem O. Aktan, Musa Y. Akkurt
Abstract:
Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty
Procedia PDF Downloads 15029709 Affectivity of Smoked Edible Sachet in Preventing Oxidation of Natural Condiment Stored in Ambient Temperature
Authors: Feny Mentang, Roike Iwan Montolalu, Henny Adeleida Dien, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon
Abstract:
Smoked fish is one of the famous fish products in North Sulawesi, Indonesia. Research in producing smoked fish using smoke liquid, and the use of that product as main taste for a new “natural condiment” have been done, including a series of researches to find materials for sachet. Research aims are to determine the effectiveness of smoked edible sachets, in preventing oxidation of natural condiment, stored in ambient temperature. Two kinds of natural condiment flavors were used, i.e. smoked Skipjack flavor, and Sea Food flavor. Three variables of edible sachets were used for the natural condiments, i.e. non-sachet, edible sachet without smoke liquid, and edible sachet with smoke liquid. The natural condiments were then stored in ambient temperature, for 0, 10, 20, and 30 days. To determine the effectiveness of edible sachets in preventing oxidation, analysis of TBA, water content, and pH were conducted. The results shown that natural condiment with smoked seafood taste had TBA values higher than that of smoked Skipjack. Edible sachet gave a highly significant effect (P > 0.01) on TBA. Natural condiment in smoked edible sachet has a lower TBA than natural condiment non-sachet, and with sachet without smoke liquid. The longer storing time, the higher TBA, especially for non-sachet and with sachet without smoke liquid. There were no significant effect (P > 0.05) of edible sachet on water content and pH.Keywords: edible sachet, smoke liquid, natural condiment, oxidation
Procedia PDF Downloads 51229708 Application of Sorptive Passive Panels for Reducing Indoor Formaldehyde Level: Effect of Environmental Conditions
Authors: Mitra Bahri, Jean Leopold Kabambi, Jacqueline Yakobi-Hancock, William Render, Stephanie So
Abstract:
Reducing formaldehyde concentration in residential buildings is an important challenge, especially during the summer. In this study, a ceiling tile was used as a sorptive passive panel for formaldehyde removal. The performance of this passive panel was evaluated under different environmental conditions. The results demonstrated that the removal efficiency is comprised between 40% and 71%. Change in the level of relative humidity (30%, 50%, and 75%) had a slight positive effect on the sorption capacity. However, increase in temperature from 21 °C to 26 °C led to approximately 7% decrease in the average formaldehyde removal performance. GC/MS and HPLC analysis revealed the formation of different by-products at low concentrations under extreme environmental conditions. These findings suggest that the passive panel selected for this study holds the potential to be used for formaldehyde removal under various conditions.Keywords: formaldehyde, indoor air quality, passive panel, removal efficiency, sorption
Procedia PDF Downloads 20929707 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation
Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar
Abstract:
Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation
Procedia PDF Downloads 483