Search results for: causal realtion extraction
1840 Analyses of Soil Volatile Contaminants Extraction by Hot Air Injection
Authors: Abraham Dayan
Abstract:
Remediation of soil containing volatile contaminants is often conducted by vapor extraction (SVE) technique. The operation is based on injection of air at ambient temperatures with or without thermal soil warming. Thermal enhancements of soil vapor extraction (TESVE) processes are usually conducted by soil heating, sometimes assisted by added steam injections. The current study addresses a technique which has not received adequate attention and is based on using exclusively hot air as an alternative to the common TESVE practices. To demonstrate the merit of the hot air TESVE technique, a sandy soil containing contaminated water is studied. Numerical and analytical tools were used to evaluate the rate of decontamination processes for various geometries and operating conditions. The governing equations are based on the Darcy law and are applied to an expanding compressible flow within a sandy soil. The equations were solved to determine the minimal time required for complete soil remediation. An approximate closed form solution was developed based on the assumption of local thermodynamic equilibrium and on a linearized representation of temperature dependence of the vapor to air density ratio. The solution is general in nature and offers insight into the governing processes of the soil remediation operation, where self-similar temperature profiles under certain conditions may exist, and the noticeable role of the contaminants evaporation and recondensation processes in affecting the remediation time. Based on analyses of the hot air TESVE technique, it is shown that it is sufficient to heat the air during a certain period of the decontamination process without compromising its full advantage, and thereby, entailing a minimization of the air-heating-energy requirements. This in effect is achieved by regeneration, leaving the energy stored in the soil during the early period of the remediation process to heat the subsequently injected ambient air, which infiltrates through it for the decontamination of the remaining untreated soil zone. The characteristic time required to complete SVE operations are calculated as a function of, both, the injected air temperature and humidity. For a specific set of conditions, it is demonstrated that elevating the injected air temperature by 20oC, the hot air injection technique reduces the soil remediation time by 50%, while requiring 30% of additional energy consumption. Those evaluations clearly unveil the advantage of the hot air SVE process, which for insignificant cost of added air heating energy, the substantial cost expenditures for manpower and equipment utilization are reduced.Keywords: Porous Media, Soil Decontamination, Hot Air, Vapor Extraction
Procedia PDF Downloads 111839 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.Keywords: proficiency test, radiation monitoring, seawater, strontium determination
Procedia PDF Downloads 1691838 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 341837 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder
Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh
Abstract:
In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization
Procedia PDF Downloads 1141836 Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane
Authors: Avinash Thakur, Parmjit S. Panesar, Manohar Singh
Abstract:
The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited.Keywords: Distribution coefficient, tri-n-octylamine, lactic acid, response surface methodology
Procedia PDF Downloads 4561835 Object Trajectory Extraction by Using Mean of Motion Vectors Form Compressed Video Bitstream
Authors: Ching-Ting Hsu, Wei-Hua Ho, Yi-Chun Chang
Abstract:
Video object tracking is one of the popular research topics in computer graphics area. The trajectory can be applied in security, traffic control, even the sports training. The trajectory for sports training can be utilized to analyze the athlete’s performance without traditional sensors. There are many relevant works which utilize mean shift algorithm with background subtraction. This kind of the schemes should select a kernel function which may affect the accuracy and performance. In this paper, we consider the motion information in the pre-coded bitstream. The proposed algorithm extracts the trajectory by composing the motion vectors from the pre-coded bitstream. We gather the motion vectors from the overlap area of the object and calculate mean of the overlapped motion vectors. We implement and simulate our proposed algorithm in H.264 video codec. The performance is better than relevant works and keeps the accuracy of the object trajectory. The experimental results show that the proposed trajectory extraction can extract trajectory form the pre-coded bitstream in high accuracy and achieve higher performance other relevant works.Keywords: H.264, video bitstream, video object tracking, sports training
Procedia PDF Downloads 4281834 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map
Procedia PDF Downloads 3841833 Pharmacognostic, Phytochemical and Antibacterial Activity of Beaumontia Randiflora
Authors: Narmeen Mehmood
Abstract:
The current study was conducted to evaluate the pharmacognostic parameters, phytochemical analysis and antibacterial activity of the plant. Microscopic studies were carried out to determine various Pharmacognostic parameters. Section cutting of the leaf was also done. The study of the ariel parts of Beaumontia grandiflora resulted in the identification of fatty acids mixture and unsaponifiable matters. For the separation of various constituents of the plant, successive solvent extraction was carried out in a laboratory. Material and Methods: The study was carried out with all three extracts of Beaumontia grandiflora i.e. Petroleum ether, Chloroform and Methanol. For the separation of various constituents of the plant, successive solvent extraction was carried out in the laboratory. Raw data containing the measured zones of inhibition in mm was tabulated. Results: The microscopic studies showed the presence of Upper epidermis in surface view, Part of Lamina in section view, cortical parenchyma in longitudinal view, Parenchyma with collapsed tissues, Parenchyma Cells, Epidermal cells with a part of covering trichome, starch granules, reticulated thickened vessels, Transverse Section of leaf of Beaumontia grandiflora showed Upper Epidermis, Lower Epidermis, Hairs, Vascular Bundles, Parenchyma. Phytochemical analysis of leaves of Beaumontia grandiflora indicates that Alkaloids are present. There is a possibility of the presence of some bioactive components in the crude extracts due to which it shows strong activity. Petroleum ether extract shows a greater zone of inhibition at low concentrations. Conclusion: The alkaloids possess good antibacterial activity so the presence of alkaloids may be responsible for the antibacterial activity observed in the crude organic extract of Beaumontia grandiflora.Keywords: successive solvent extraction, zone of inhibitions., microscopy, phytochemical analysis
Procedia PDF Downloads 231832 Understanding Natural Resources Governance in Canada: The Role of Institutions, Interests, and Ideas in Alberta's Oil Sands Policy
Authors: Justine Salam
Abstract:
As a federal state, Canada’s constitutional arrangements regarding the management of natural resources is unique because it gives complete ownership and control of natural resources to the provinces (subnational level). However, the province of Alberta—home to the third largest oil reserves in the world—lags behind comparable jurisdictions in levying royalties on oil corporations, especially oil sands royalties. While Albertans own the oil sands, scholars have argued that natural resource exploitation in Alberta benefits corporations and industry more than it does Albertans. This study provides a systematic understanding of the causal factors affecting royalties in Alberta to map dynamics of power and how they manifest themselves during policy-making. Mounting domestic and global public pressure led Alberta to review its oil sands royalties twice in less than a decade through public-commissioned Royalty Review Panels, first in 2007 and again in 2015. The Panels’ task was to research best practices and to provide policy recommendations to the Government through public consultations with Albertans, industry, non-governmental organizations, and First Nations peoples. Both times, the Panels recommended a relative increase to oil sands royalties. However, irrespective of the Reviews’ recommendations, neither the right-wing 2007 Progressive Conservative Party (PC) nor the left-wing 2015 New Democratic Party (NDP) government—both committed to increase oil sands royalties—increased royalty intake. Why did two consecutive political parties at opposite ends of the political spectrum fail to account for the recommendations put forward by the Panel? Through a qualitative case-study analysis, this study assesses domestic and global causal factors for Alberta’s inability to raise oil sands royalties significantly after the two Reviews through an institutions, interests, and ideas framework. Indeed, causal factors can be global (e.g. market and price fluctuation) or domestic (e.g. oil companies’ influence on the Alberta government). The institutions, interests, and ideas framework is at the intersection of public policy, comparative studies, and political economy literatures, and therefore draws multi-faceted insights into the analysis. To account for institutions, the study proposes to review international trade agreements documents such as the North American Free Trade Agreement (NAFTA) because they have embedded Alberta’s oil sands into American energy security policy and tied Canadian and Albertan oil policy in legal international nods. To account for interests, such as how the oil lobby or the environment lobby can penetrate governmental decision-making spheres, the study draws on the Oil Sands Oral History project, a database of interviews from government officials and oil industry leaders at a pivotal time in Alberta’s oil industry, 2011-2013. Finally, to account for ideas, such as how narratives of Canada as a global ‘energy superpower’ and the importance of ‘energy security’ have dominated and polarized public discourse, the study relies on content analysis of Alberta-based pro-industry newspapers to trace the prevalence of these narratives. By mapping systematically the nods and dynamics of power at play in Alberta, the study sheds light on the factors that influence royalty policy-making in one of the largest industries in Canada.Keywords: Alberta Canada, natural resources governance, oil sands, political economy
Procedia PDF Downloads 1321831 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3331830 The Accuracy of Small Firms at Predicting Their Employment
Authors: Javad Nosratabadi
Abstract:
This paper investigates the difference between firms' actual and expected employment along with the amount of loans invested by them. In addition, it examines the relationship between the amount of loans received by firms and wages. Empirically, using a causal effect estimation and firm-level data from a province in Iran between 2004 and 2011, the results show that there is a range of the loan amount for which firms' expected employment meets their actual one. In contrast, there is a gap between firms' actual and expected employment for any other loan amount. Furthermore, the result shows that there is a positive and significant relationship between the amount of loan invested by firms and wages.Keywords: expected employment, actual employment, wage, loan
Procedia PDF Downloads 1611829 Utilization of Chrysanthemum Flowers in Textile Dyeing: Chemical and Phenolic Analysis of Dyes and Fabrics
Authors: Muhammad Ahmad
Abstract:
In this research, Chrysanthemum (morifolium) flowers are used as a natural dye to reduce synthetic dyes and take a step toward sustainability in the fashion industry. The aqueous extraction method is utilized for natural dye extraction and then applied to silk and cotton fabric samples. The color of the dye extracted from dried chrysanthemum flowers is originally a shade of rich green, but after being washed with detergent, it turns to a shade of yellow. Traditional salt and vinegar are used as a natural mordant to fix the dye color. This study also includes a phenolic and chemical analysis of the natural dye (Chrysanthemum flowers) and the textiles (cotton and silk). Compared to cotton fabric, silk fabric has far superior chemical qualities to use in natural dyeing. The results of this study show that the Chrysanthemum flower offers a variety of colors when treated with detergent, without detergent, and with mordants. Chrysanthemum flowers have long been used in other fields, such as medicine; therefore, it is time to start using them in the fashion industry as a natural dye to lessen the harm that synthetic dyes cause.Keywords: natural dyes, Chrysanthemum flower, sustainability, textile fabrics, chemical and phenolic analysis
Procedia PDF Downloads 221828 Research on Hangzhou Commercial Center System Based on Point of Interest Data
Authors: Chen Wang, Qiuxiao Chen
Abstract:
With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.Keywords: business center system, business format, main city of Hangzhou, POI extraction method
Procedia PDF Downloads 1401827 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 1701826 The Impact of Task Type and Group Size on Dialogue Argumentation between Students
Authors: Nadia Soledad Peralta
Abstract:
Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts.Keywords: sociocognitive interaction, argumentation, university students, size of the grup
Procedia PDF Downloads 831825 Valorization of Waste and By-products for Protein Extraction and Functional Properties
Authors: Lorena Coelho, David Ramada, Catarina Nobre, Joaquim Gaião, Juliana Duarte
Abstract:
The development of processes that allows the valorization of waste and by-products generated by industries is crucial to promote symbiotic relationships between different sectors and is mandatory to “close the loop” in the circular economy paradigm. In recent years, by-products and waste from agro-food and forestry sector have attracted attention due to their potential application and technical characteristics. The extraction of bio-based active compounds to be reused is in line with the circular bioeconomy concept trends, combining the use of renewable resources with the process’s circularity, aiming the waste reduction and encouraging reuse and recycling. Among different types of bio-based materials, which are being explored and can be extracted, proteins fractions are becoming an attractive new raw material. Within this context, BioTrace4Leather project, a collaboration between two Technological Centres – CeNTI and CTIC, and a company of Tanning and Finishing of Leather – Curtumes Aveneda, aims to develop innovative and biologically sustainable solutions for leather industry and accomplish the market circularity trends. Specifically, it aims to the valorisation of waste and by-products from the tannery industry through proteins extraction and the development of an innovative and biologically sustainable materials. The achieved results show that keratin, gelatine, and collagen fractions can be successfully extracted from hair and leather bovine waste. These products could be reintegrated into the industrial manufacturing process to attain innovative and functional textile and leather substrates. ACKNOWLEDGEMENT This work has been developed under BioTrace4Leather scope, a project co-funded by Operational Program for Competitiveness and Internationalization (COMPETE) of PORTUGAL2020, through the European Regional Development Fund (ERDF), under grant agreement Nº POCI-01-0247-FEDER-039867.Keywords: leather by-products, circular economy, sustainability, protein fractions
Procedia PDF Downloads 1581824 Antioxidant Properties of Rice Bran Oil Using Various Heat Treatments
Authors: Supakan Rattanakon, Jakkrapan Boonpimon, Akkaragiat Bhuangsaeng, Aphiwat Ratriphruek
Abstract:
Rice bran oil (RBO) has been found to lower the level of serum cholesterol, has antioxidant and anti-carcinogenic property, and attenuate allergic inflammation. These properties of RBO are due to antioxidant compositions, especially, phenolic compounds. The higher amount of these active compounds in RBO, the greater value of RBO is. Thermal process of rice bran before solvent RBO extraction has been found to have a higher phenolic contents. Therefore, the purpose of this study is to using different heating methods on rice bran before the solvent extraction. Then, % yield of RBO, total phenolic content (TPC), and antioxidant property of two white Thai rice; KDML105 and RD6 were determined. The Folin-Ciocalteu colorimetric assay was used to determine TPC and scavenging of free radicals (DPPH) was used to determine antioxidant property expressed as EC50. The result showed that thermal process did not increase % yield of RBO but increase the TPC with 1.41 mg gallic acid equivalent (GAEmg-1). The highest TPC was found in KDML105 by using sonicator. The highest antioxidant activity was found in RD6 using autoclave. The EC50 of RBO was 0.04 mg/mL. Further study should be performed on different pretreatments to increase the TPC and antioxidant property.Keywords: antioxidant, rice bran oil, total phenol content, white rice
Procedia PDF Downloads 2531823 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 1541822 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6681821 Production of Biodiesel from Avocado Waste in Hossana City, Ethiopia
Authors: Tarikayehu Amanuel, Abraham Mohammed
Abstract:
The production of biodiesel from waste materials is becoming an increasingly important research area in the field of renewable energy. One potential waste material source is avocado, a fruit with a large seed and peel that are typically discarded after consumption. This research aims to investigate the feasibility of using avocado waste as a feedstock for the production of biodiesel. The study focuses on extracting oil from the waste material using the transesterification technique and then characterizing the properties of oil to determine its suitability for conversion to biodiesel. The study was conducted experimentally, and a maximum oil yield of 11.583% (150g of oil produced from 1.295kg of avocado waste powder) was obtained from avocado waste powder at an extraction time of 4hr. An 87% fatty acid methyl ester (biodiesel) conversion was also obtained using a methanol/oil ratio of 6:1, 1.3g NaOH, reaction time 60min, and 65°C reaction temperature. Furthermore, from 145 ml of avocado waste oil, 126.15 ml of biodiesel was produced, indicating a high percentage of conversion (87%). Conclusively, the produced biodiesel showed comparable physical and chemical characteristics to that of standard biodiesel samples considered for the study. The results of this research could help to identify a new source of biofuel production while also addressing the issue of waste disposal in the food industry.Keywords: biodiesel, avocado, transesterification, soxhlet extraction
Procedia PDF Downloads 701820 Transition of Nutrition Style and Obesity: A Kuwaiti Case Study
Authors: Othman Saleh Al-Razgan
Abstract:
Obesity establishes an epidemic along with an array of comorbidities and this call for careful clinical assessment, to identify causal factors and comprehensive management. In Kuwait, this epidemic reflects the progressive, socio-economic and age-related issues, along with the shift of nutrition from traditional to modern-style. The current research attempts to narrate the obesity and related health issues in Kuwait, with a special emphasis on the magnitude of the issue in Kuwait, nutrition transition over the past three decades, change in life-style, and possible solution for this issue.Keywords: clinical assessment, comorbidities, obesity, socio-economic
Procedia PDF Downloads 4421819 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data
Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian
Abstract:
This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment
Procedia PDF Downloads 211818 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients
Procedia PDF Downloads 2591817 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 1391816 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 1491815 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images
Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu
Abstract:
The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.Keywords: level set model, multi-temporal image, lake contour extraction, contour update
Procedia PDF Downloads 3661814 Phytochemical Screening, and Antimicrobial Evaluation of Bioactive Compounds from Red Millipede (Trigoniulus corallinus)
Authors: Y. B. Idris, M. Sirajo, L. G. Hassan, T. Izuagie, T. Muktar, I. Lawal, A. U. Abubakar
Abstract:
This study investigates the extraction, phytochemical composition, and antimicrobial activity of bioactive compounds from red millipedes using three different solvents: n-Hexane, Chloroform, and Methanol. The largest yield was obtained from the methanol extract, which had percentage yields of 0.8%, 2.2%, and 5.6%, respectively. Terpenoids and sterols were found in all extracts according to preliminary zoochemical screening, but only the methanol extract included saponins and phenols. With a maximum zone of inhibition of 9 mm at 1000 µg/ml, antimicrobial susceptibility tests revealed that the methanol extract had the strongest antibacterial activity, especially against Escherichia coli and Staphylococcus aureus. Significant activity was also shown by the n-hexane extract, although the chloroform extract had only mild antibacterial activity. Tests for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) verified that the methanol extract was more effective than the other extracts, particularly against S. aureus and S. typhi. None of the extracts, nonetheless, showed any discernible antifungal action. The potential of red millipede extracts, especially those based on methanol, as a source of antimicrobial chemicals for use in the future is highlighted by this work.Keywords: millipedes, defensive extraction, antibacterial, antifungal, antimicrobial, minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC)
Procedia PDF Downloads 131813 Extraction, Characterization, and Applicability of Rich β-Glucan Fractions from Fungal Biomass
Authors: Zaida Perez-Bassart, Berta Polanco-Estibalez, Maria Jose Fabra, Amparo Lopez-Rubio, Antonio Martinez-Abad
Abstract:
Mushroom production has enormously increased in recent years, not only as food products but also for applications in pharmaceuticals, nutraceuticals, and cosmetics. Consequently, interest in its chemical composition, nutritional value, and therapeutic properties has also increased. Fungi are rich in bioactive compounds such as polysaccharides, polyphenols, glycopeptides, and ergosterol, of great medicinal value, but within polysaccharides, β-glucans are the most prominent molecules. They are formed by D-glucose monomers, linked by β-glucosidic bonds β-(1,3) with side chains linked by β-(1,6) bonds. The number and position of the β-(1,6) branches strongly influence the arrangement of the tertiary structure, which, together with the molecular weight, determine the different attributed bioactivities (immunostimulating, anticancer, antimicrobial, prebiotic, etc.) and physico-chemical properties (solubility, bioaccessibility, viscosity or emulsifying). On the other hand, there is a growing interest in the study of fungi as an alternative source of chitin obtained from the by-products of the fungal industry. In this work, a cascade extraction process using aqueous neutral and alkaline treatments was carried out for Grifola frondosa and Lentinula edodes, and the compositional analysis and functional properties of each fraction were characterized. Interestingly, the first fraction obtained by using aqueous treatment at room temperature was the richest in polysaccharides, proteins, and polyphenols, thus obtaining a greater antioxidant capacity than in the other fractions. In contrast, the fractions obtained by alkaline treatments showed a higher degree of β-glucans purification compared to aqueous extractions but a lower extraction yield. Results revealed the different structural recalcitrance of β-glucans, preferentially linked to proteins or chitin depending on the fungus type, which had a direct impact on the functionalities and bioactivities of each fraction.Keywords: fungi, mushroom, β-glucans, chitin
Procedia PDF Downloads 1361812 Ethnic Xenophobia as Symbolic Politics: An Explanation of Anti-Migrant Activity from Brussels to Beirut
Authors: Annamarie Rannou, Horace Bartilow
Abstract:
Global concerns about xenophobic activity are on the rise across developed and developing countries. And yet, social science scholarship has almost exclusively examined xenophobia as a prejudice of advanced western nations. This research argues that the fields of study related to xenophobia must be re-conceptualized within a framework of ethnicity in order to level the playing field for cross-regional inquiry. This study develops a new concept of ethnic xenophobia and integrates existing explanations of anti-migrant expression into theories of ethnic threat. We argue specifically that political elites convert economic, political, and social threats at the national level into ethnic xenophobic activity in order to gain or maintain political advantage among their native selectorate. We expand on Stuart Kaufman’s theory of symbolic politics to underscore the methods of mobilization used against migrants and the power of elite discourse in moments of national crises. An original dataset is used to examine over 35,000 cases of ethnic xenophobic activity targeting refugees. Wordscores software is used to develop a unique measure of anti-migrant elite rhetoric which captures the symbolic discourse of elites in their mobilization of ethnic xenophobic activism. We use a Structural Equation Model (SEM) to test the causal pathways of the theory across seventy-two developed and developing countries from 1990 to 2016. A framework of Most Different Systems Design (MDSD) is also applied to two pairs of developed-developing country cases, including Kenya and the Netherlands and Lebanon and the United States. This study sheds tremendous light on an underrepresented area of comparative research in migration studies. It shows that the causal elements of anti-migrant activity are far more similar than existing research suggests which has major implications for policy makers, practitioners, and academics in fields of migration protection and advocacy. It speaks directly to the mobilization of myths surrounding refugees, in particular, and the nationalization of narratives of migration that may be neutralized by the development of deeper associational relationships between natives and migrants.Keywords: refugees, ethnicity, symbolic politics, elites, migration, comparative politics
Procedia PDF Downloads 1451811 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 523