Search results for: blue color detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4875

Search results for: blue color detection

4335 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering

Authors: Liu Linxin

Abstract:

As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.

Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs

Procedia PDF Downloads 29
4334 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.

Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology

Procedia PDF Downloads 515
4333 Video Text Information Detection and Localization in Lecture Videos Using Moments

Authors: Belkacem Soundes, Guezouli Larbi

Abstract:

This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.

Keywords: text detection, text localization, lecture videos, pseudo zernike moments

Procedia PDF Downloads 152
4332 Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that Galactomyces sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of Galactomyces sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that G. reessii has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters.

Keywords: decolorization, palm oil mill effluent, termite, yeast

Procedia PDF Downloads 209
4331 Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles

Authors: Sudhakar Saroj, Satya Vir Singh

Abstract:

Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst.

Keywords: direct blue 199, nanoparticles, TiO₂, photodegradation

Procedia PDF Downloads 236
4330 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 523
4329 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China

Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang

Abstract:

Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.

Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support

Procedia PDF Downloads 90
4328 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 357
4327 Speciation of Bacteria Isolated from Clinical Canine and Feline Urine Samples by Using ChromID CPS Elite Agar: A Preliminary Study

Authors: Delsy Salinas, Andreia Garcês, Augusto Silva, Paula Brilhante Simões

Abstract:

Urinary tract infection (UTI) is a common disease affecting dogs and cats in both community and hospital environment. Bacteria is the most frequent agent isolated, fewer than 1% of infections are due to parasitic, fungal, or viral agents. Common symptoms and laboratory abnormalities includeabdominal pain, pyrexia, renomegaly, and neutrophilia with left shift. A rapid and precise identification of the bacterial agent is still a challenge in veterinarian laboratories. Therefore, this cross-sectional study aims to describe bacterial colony patterns of urine samples by using chromID™ CPS® EliteAgar (BioMérieux, France) from canine and feline specimens submitted to a veterinary laboratory in Portugal (INNO Veterinary Laboratory, Braga)from January to March2022. All urine samples were cultivated in CPS Elite Agar with calibrated 1 µL inoculating loop and incubated at 37ºC for 18-24h. Color,size, and shape (regular or irregular outline)were recorded for all samples. All colonies were classified as Gram-negative or Gram-positive bacteriausing Gram stain (PREVI® Color BioMérieux, France) and determined if they were pure colonies. Identification of bacteria species was performed using GP and GN cards inVitek 2® Compact(BioMérieux, France). A total of 256/1003 submitted urine samples presented bacterial growth, from which 172 isolates were included in this study. The sample’s population included 111 dogs (n=45 males and n=66 females) and 61 cats (n=35 males and n=26 females). The most frequent isolated bacteria wasEscherichia coli (44,7%), followed by Proteus mirabilis (13,4%). All Escherichia coli isolates presented red to burgundy colonies, a colony diameter between 2 to 6 mm, and regular or irregular outlines. Similarly, 100% of Proteus mirabilis isolates were dark yellow colonies with a diffuse pigment and the same size and shape as Escherichia coli. White and pink pale colonies where Staphylococcus species exclusively and S. pseudintermedius was the most frequent (8,2 %). Cian to blue colonies were mostly Enterococcusspp. (8,2%) and Streptococcus spp. (4,6%). Beige to brown colonies were Pseudomonas aeruginosa (2,9%) and Citrobacter spp. (1,2%).Klebsiella spp.,Serratia spp. and Enterobacter spp were green colonies. All Gram-positive isolates were 1 to 2 mm diameter long and had a regular outline, meanwhile, Gram-negative rods presented variable patterns. This results showed that theprevalence of E coli and P. mirabilis as uropathogenic agents follows the same trends in Europe as previously described in other studies. Both agents presented a particular color pattern in CPS Elite Agar to identify them without needing complementary tests. No other bacteria genus could be correlated strongly to a specific color pattern, and similar results have been observed instudies using human’s samples. Chromogenic media shows a great advantage for common urine bacteria isolation than traditional COS, McConkey, and CLEDAgar mediums in a routine context, especially when mixed fermentative Gram-negative agents grow simultaneously. In addition, CPS Elite Agar is versatile for Artificial Intelligent Reading Plates Systems. Routine veterinarian laboratories could use CPS Elite Agar for a rapid screening for bacteria identification,mainlyE coli and P.mirabilis, saving 6h to 10h of automatized identification.

Keywords: cats, CPS elite agar, dogs, urine pathogens

Procedia PDF Downloads 102
4326 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform

Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal

Abstract:

This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.

Keywords: improvement, brain, matlab, markers, boundaries

Procedia PDF Downloads 516
4325 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection

Authors: Sloka Bhushan

Abstract:

Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.

Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles

Procedia PDF Downloads 142
4324 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 363
4323 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 149
4322 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: recognition of shape, generalized hough transformation, histogram, spatiogram, learning

Procedia PDF Downloads 158
4321 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders

Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe

Abstract:

The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.

Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults

Procedia PDF Downloads 543
4320 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications

Authors: Nicole Virgili, Romolo Remetti

Abstract:

The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.

Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination

Procedia PDF Downloads 151
4319 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya

Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti

Abstract:

Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.

Keywords: aquaculture, ecosystem, blue economy, food security

Procedia PDF Downloads 79
4318 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 339
4317 Understanding the Impact of Ambience, Acoustics, and Chroma on User Experience through Different Mediums and Study Scenarios

Authors: Mushty Srividya

Abstract:

Humans that inhabit a designed space consciously or unconsciously accept the spaces which have an impact on how they perceive, feel and act accordingly. Spaces that are more interactive and communicative with the human senses become more interesting. Interaction in architecture is the art of building relationships between the user and the spaces. Often spaces are form-based, function-based or aesthetically pleasing spaces but they are not interactive with the user which actually has a greater impact on how the user perceives the designed space and appreciate it. It is very necessary for a designer to understand and appreciate the human character and design accordingly, wherein the user gets the flexibility to explore and experience it for themselves rather than the designed space dictating the user how to perceive or feel in that space. In this interaction between designed spaces and the user, a designer needs to understand the spatial potential and user’s needs because the design language varies with varied situations in accordance with these factors. Designers often have the tendency to construct spaces with their perspectives, observations, and sense the space in their range of different angles rather than the users. It is, therefore, necessary to understand the potential of the space by understanding different factors and improve the quality of space with the help of creating better interactive spaces. For an interaction to occur between the user and space, there is a need for some medium. In this paper, light, color, and sound will be used as the mediums to understand and create interactions between the user and space, considering these to be the primary sources which would not require any physical touch in the space and would help in triggering the human senses. This paper involves in studying and understanding the impact of light, color and sound on different typologies of spaces on the user through different findings, articles, case studies and surveys and try to get links between these three mediums to create an interaction. This paper also deals with understanding in which medium takes an upper hand in a varied typology of spaces and identify different techniques which would create interactions between the user and space with the help of light, color, and sound.

Keywords: color, communicative spaces, human factors, interactive spaces, light, sound

Procedia PDF Downloads 211
4316 The Development of a Miniaturized Raman Instrument Optimized for the Detection of Biosignatures on Europa

Authors: Aria Vitkova, Hanna Sykulska-Lawrence

Abstract:

In recent years, Europa has been one of the major focus points in astrobiology due to its high potential of harbouring life in the vast ocean underneath its icy crust. However, the detection of life on Europa faces many challenges due to the harsh environmental conditions and mission constraints. Raman spectroscopy is a highly capable and versatile in-situ characterisation technique that does not require any sample preparation. It has only been used on Earth to date; however, recent advances in optical and laser technology have also allowed it to be considered for extraterrestrial exploration. So far, most efforts have been focused on the exploration of Mars, the most imminent planetary target. However, as an emerging technology with high miniaturization potential, Raman spectroscopy also represents a promising tool for the exploration of Europa. In this study, the capabilities of Raman technology in terms of life detection on Europa are explored and assessed. Spectra of biosignatures identified as high priority molecular targets for life detection on Europa were acquired at various excitation wavelengths and conditions analogous to Europa. The effects of extremely low temperatures and low concentrations in water ice were explored and evaluated in terms of the effectiveness of various configurations of Raman instruments. Based on the findings, a design of a miniaturized Raman instrument optimized for in-situ detection of life on Europa is proposed.

Keywords: astrobiology, biosignatures, Europa, life detection, Raman Spectroscopy

Procedia PDF Downloads 212
4315 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 91
4314 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 602
4313 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
4312 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation

Procedia PDF Downloads 195
4311 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
4310 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 139
4309 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Authors: Pinki Sharma, Himanshu Joshi

Abstract:

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level. But at most of the places these plants are not properly working due to high concentration of organic matter and other contaminants in biologically treated spentwash. To make the membrane treatment proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) as pre-treatment of RO at tertiary stage was performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15- 43°C) used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS by 62%, 93.5% and 75.5%, with UF, respectively at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Keywords: bio-digested distillery spentwash, reverse osmosis, response surface methodology, ultra-filtration

Procedia PDF Downloads 347
4308 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 488
4307 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)

Authors: Supatchalee Sirichokworrakit

Abstract:

Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.

Keywords: tilapia bone flour, noodles, cooking quality, calcium

Procedia PDF Downloads 403
4306 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 359