Search results for: structural mode RCS
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6152

Search results for: structural mode RCS

512 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application

Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar

Abstract:

This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.

Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis

Procedia PDF Downloads 84
511 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 270
510 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 65
509 An Insight Into the Effective Distribution of Lineaments Over Sheared Terrains to Hydraulically Characterize the Shear Zones in Hard Rock Aquifer System

Authors: Tamal Sur, Tapas Acharya

Abstract:

Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having a high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of the high amount of lineament accumulation and their intersection with high groundwater fluctuation zones, i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.

Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation

Procedia PDF Downloads 87
508 Winkler Springs for Embedded Beams Subjected to S-Waves

Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto

Abstract:

Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.

Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction

Procedia PDF Downloads 61
507 A Review on Silicon Based Induced Resistance in Plants against Insect Pests

Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra

Abstract:

Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.

Keywords: defensive, phytoliths, resistance, stresses

Procedia PDF Downloads 188
506 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material

Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva

Abstract:

Creating favorable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. Psychology research has demonstrated that positive comprehension becomes possible when new information becomes part of student’s subjective experience and when linkages between the attributes of notions and various ways of their presentations can be established. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. The article describes the implementation of a holistic approach to teaching mathematics designed to address the primary challenges of such teaching, specifically, the challenge of students’ comprehension. This approach consists of (1) establishing links between the attributes of a notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience -emotional and value, contextual, procedural, communicative- during the educational process; (3) links between different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modeling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and technology influence understanding of material used in teaching mathematics was the research’s primary goal. The research included an experiment in which 256 secondary school students took part: 142 in the experimental group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics -'Derivative' and 'Trigonometric functions'- was evaluated. Control group participants were taught using traditional methods. Students in the experimental group were taught using the holistic method: under the teacher’s guidance, they carried out problems designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as problems that required the ability to operate with all modes of presentation. The use of the technology that forms inter-subject notions based on linkages between perceptional, real, and conceptual mathematical spaces proved to be of special interest to the students. Results of the experiment were analyzed by presenting students in each of the groups with a final test in each of the studied topics. The test included problems that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion was used to reveal the statistical significance of results (pass-fail the modeling test). A significant difference in results was revealed (p < 0.001), which allowed the authors to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. Also, it was revealed (used Student’s t-test) that the students of the experimental group performed reliably (p = 0.0001) more problems in comparison with those in the control group. The results obtained allow us to conclude that increasing comprehension and assimilation of study material took place as a result of applying implemented methods and techniques.

Keywords: comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions

Procedia PDF Downloads 176
505 CO2 Capture in Porous Silica Assisted by Lithium

Authors: Lucero Gonzalez, Salvador Alfaro

Abstract:

Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.

Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis

Procedia PDF Downloads 268
504 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation

Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan

Abstract:

Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.

Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method

Procedia PDF Downloads 160
503 An Insight into the Distribution of Lineaments over Sheared Terrains to Hydraulically Characterize the Shear Zones in Precambrian Hard Rock Aquifer System

Authors: Tamal Sur, Tapas Acharya

Abstract:

Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of high amount of lineament accumulation and their intersection with high groundwater fluctuation zones i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.

Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation

Procedia PDF Downloads 77
502 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building

Authors: A. Schuchter, M. Promegger

Abstract:

The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.

Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning

Procedia PDF Downloads 120
501 Feminising Football and Its Fandom: The Ideological Construction of Women's Super League

Authors: Donna Woodhouse, Beth Fielding-Lloyd, Ruth Sequerra

Abstract:

This paper explores the structure and culture of the English Football Association (FA) the governing body of soccer in England, in relation to the development of the FA Women’s Super League (WSL). In doing so, it examines the organisation’s journey from banning the sport in 1921 to establishing the country’s first semi professional female soccer league in 2011. As the FA has a virtual monopoly on defining the structures of the elite game, we attempted to understand its behaviour in the context of broader issues of power, control and resistance by giving voice to the experiences of those affected by its decisions. Observations were carried out at 39 matches over three years. Semi structured interviews with 17 people involved in the women’s game, identified via snowball sampling, were also carried out. Transcripts accompanied detailed field notes and were inductively coded to identify themes. What emerged was the governing body’s desire to create a new product, jettisoning the long history of the women’s game in order to shape and control the sport in a way it is no longer able to, with the elite male club game. The League created was also shaped by traditional conceptualisations of gender, in terms of the portrayal of its style of play and target audience, setting increased participation and spectatorship targets as measures of ‘success’. The national governing body has demonstrated pseudo inclusion and a lack of enthusiasm for the implementation of equity reforms, driven by a belief that the organisation is already representative, fair and accessible. Despite a consistent external pressure, the Football Association is still dominated at its most senior levels by males. Via claiming to hold a monopoly on expertise around the sport, maintaining complex committee structures and procedures, and with membership rules rooted in the amateur game, it remains a deeply gendered organisation, resistant to structural and cultural change. In WSL, the FA's structure and culture have created a franchise over which it retains almost complete control, dictating the terms of conditions of entry and marginalising alternative voices. The organisation presents a feminised version of both play and spectatorship, portraying the sport as a distinct, and lesser, version of soccer.

Keywords: football association, organisational culture, soccer, women’s super league

Procedia PDF Downloads 352
500 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components

Authors: Najeh Lakhoua

Abstract:

Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.

Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture

Procedia PDF Downloads 204
499 Teaching Ethnic Relations in Social Work Education: A Study of Teachers' Strategies and Experiences in Sweden

Authors: Helene Jacobson Pettersson, Linda Lill

Abstract:

Demographic changes and globalization in society provide new opportunities for social work and social work education in Sweden. There has been an ambition to include these aspects into the Swedish social work education. However, the Swedish welfare state standard continued to be as affectionate as invisible starting point in discussions about people’s way of life and social problems. The aim of this study is to explore content given to ethnic relations in social work in the social work education in Sweden. Our standpoint is that the subject can be understood both from individual and structural levels, it changes over time, varies in different steering documents and differs from the perspectives of teachers and students. Our question is what content is given to ethnic relations in social work by the teachers in their strategies and teaching material. The study brings together research in the interface between education science, social work and research of international migration and ethnic relations. The presented narratives are from longer interviews with a total of 17 university teachers who teach in social work program at four different universities in Sweden. The universities have in different ways a curriculum that involves the theme of ethnic relations in social work, and the interviewed teachers are teaching and grading social workers on specific courses related to ethnic relations at undergraduate and graduate levels. Overall assesses these 17 teachers a large number of students during a semester. The questions were concerned on how the teachers handle ethnic relations in education in social work. The particular focus during the interviews has been the teacher's understanding of the documented learning objectives and content of literature and how this has implications for their teaching. What emerges is the teachers' own stories about the educational work and how they relate to the content of teaching, as well as the teaching strategies they use to promote the theme of ethnic relations in social work education. The analysis of this kind of pedagogy is that the teaching ends up at an individual level with a particular focus on the professional encounter with individuals. We can see the shortage of a critical analysis of the construction of social problems. The conclusion is that individual circumstance precedes theoretical perspective on social problems related to migration, transnational relations, globalization and social. This result has problematic implications from the perspective of sustainability in terms of ethnic diversity and integration in society. Thus these aspects have most relevance for social workers’ professional acting in social support and empowerment related activities, in supporting the social status and human rights and equality for immigrants.

Keywords: ethnic relations in Swedish social work education, teaching content, teaching strategies, educating for change, human rights and equality

Procedia PDF Downloads 248
498 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis

Authors: V. V. Srinivasu, Jayashree Das

Abstract:

Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.

Keywords: co-doping, electro spin resonance, microwave absorption, spintronics

Procedia PDF Downloads 339
497 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 194
496 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 84
495 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression

Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac

Abstract:

The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.

Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi

Procedia PDF Downloads 196
494 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 149
493 An Institutional Mapping and Stakeholder Analysis of ASEAN’s Preparedness for Nuclear Power Disaster

Authors: Nur Azha Putra Abdul Azim, Denise Cheong, S. Nivedita

Abstract:

Currently, there are no nuclear power reactors among the Association of Southeast Asian Nations (ASEAN) member states (AMS) but there are seven operational nuclear research reactors, and Indonesia is about to construct the region’s first experimental power reactor by the end of the decade. If successful, the experimental power reactor will lay the foundation for the country’s and region’s first nuclear power plant. Despite projecting confidence during the period of nuclear power renaissance in the region in the last decade, none of the AMS has committed to a political decision on the use of nuclear energy and this is largely due to the Fukushima nuclear power accident in 2011. Of the ten AMS, Vietnam, Indonesia and Malaysia have demonstrated the most progress in developing nuclear energy based on the nuclear power infrastructure development assessments made by the International Atomic Energy Agency. Of these three states, Vietnam came closest to building its first nuclear power plant but decided to delay construction further due to safety and security concerns. Meanwhile, Vietnam along with Indonesia and Malaysia continue with their nuclear power infrastructure development and the remaining SEA states, with the exception of Brunei and Singapore, continue to build their expertise and capacity for nuclear power energy. At the current rate of progress, Indonesia is expected to make a national decision on the use of nuclear power by 2023 while Malaysia, the Philippines, and Thailand have included the use of nuclear power in their mid to long-term power development plans. Vietnam remains open to nuclear power but has not placed a timeline. The medium to short-term power development projection in the region suggests that the use of nuclear energy in the region is a matter of 'when' rather than 'if'. In lieu of the prospects for nuclear energy in Southeast Asia (SEA), this presentation will review the literature on ASEAN radiological emergency and preparedness response (EPR) plans and examine ASEAN’s disaster management and emergency framework. Through a combination of institutional mapping and stakeholder analysis methods, which we examine in the context of the international EPR, and nuclear safety and security regimes, we will identify the issues and challenges in developing a regional radiological EPR framework in the SEA. We will conclude with the observation that ASEAN faces serious structural, institutional and governance challenges due to the AMS inherent political structures and history of interstate conflicts, and propose that ASEAN should either enlarge the existing scope of its disaster management and response framework or that its radiological EPR framework should exist as a separate entity.

Keywords: nuclear power, nuclear accident, ASEAN, Southeast Asia

Procedia PDF Downloads 152
492 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 116
491 Examining Terrorism through a Constructivist Framework: Case Study of the Islamic State

Authors: Shivani Yadav

Abstract:

The Study of terrorism lends itself to the constructivist framework as constructivism focuses on the importance of ideas and norms in shaping interests and identities. Constructivism is pertinent to understand the phenomenon of a terrorist organization like the Islamic State (IS), which opportunistically utilizes radical ideas and norms to shape its ‘politics of identity’. This ‘identity’, which is at the helm of preferences and interests of actors, in turn, shapes actions. The paper argues that an effective counter-terrorism policy must recognize the importance of ideas in order to counter the threat arising from acts of radicalism and terrorism. Traditional theories of international relations, with an emphasis on state-centric security problematic, exhibit several limitations and problems in interpreting the phenomena of terrorism. With the changing global order, these theories have failed to adapt to the changing dimensions of terrorism, especially ‘newer’ actors like the Islamic State (IS). The paper observes that IS distinguishes itself from other terrorist organizations in the way that it recruits and spreads its propaganda. Not only are its methods different, but also its tools (like social media) are new. Traditionally, too, force alone has rarely been sufficient to counter terrorism, but it seems especially impossible to completely root out an organization like IS. Time is ripe to change the discourse around terrorism and counter-terrorism strategies. The counter-terrorism measures adopted by states, which primarily focus on mitigating threats to the national security of the state, are preoccupied with statist objectives of the continuance of state institutions and maintenance of order. This limitation prevents these theories from addressing the questions of justice and the ‘human’ aspects of ideas and identity. These counter-terrorism strategies adopt a problem-solving approach that attempts to treat the symptoms without diagnosing the disease. Hence, these restrictive strategies fail to look beyond calculated retaliation against violent actions in order to address the underlying causes of discontent pertaining to ‘why’ actors turn violent in the first place. What traditional theories also overlook is that overt acts of violence may have several causal factors behind them, some of which are rooted in the structural state system. Exploring these root causes through the constructivist framework helps to decipher the process of ‘construction of terror’ and to move beyond the ‘what’ in theorization in order to describe ‘why’, ‘how’ and ‘when’ terrorism occurs. Study of terrorism would much benefit from a constructivist analysis in order to explore non-military options while countering the ideology propagated by the IS.

Keywords: constructivism, counter terrorism, Islamic State, politics of identity

Procedia PDF Downloads 189
490 The Impact of Coronal STIR Imaging in Routine Lumbar MRI: Uncovering Hidden Causes to Enhanced Diagnostic Yield of Back Pain and Sciatica

Authors: Maysoon Nasser Samhan, Somaya Alkiswani, Abdullah Alzibdeh

Abstract:

Background: Routine lumbar MRIs for back pain may yield normal results despite persistent symptoms, which means the possibility of other causes for this pain, which was not shown on the routine images. Research suggests including coronal STIR imaging to detect additional pathologies like sacroiliitis. Objectives: This study aims to enhance diagnostic accuracy and aid in determining treatment processes for patients with persistent back pain who have normal routine lumbar MRI (T1 and T2 images) by incorporating coronal STIR into the examination. Methods: A prospectively conducted study involving 274 patients, 115 males and 159 females, with an age range of 6–92 years, reviewed their medical records and imaging data following a lumbar spine MRI. This study included patients with back pain and sciatica as their primary complaints, all of whom underwent lumbar spine MRIs at our hospital to identify potential pathologies. Using a GE Signa HD 1.5T MRI System, each patient received a standard MRI protocol that included T1 and T2 sagittal and axial sequences, as well as a coronal STIR sequence. We collected relevant MRI findings, including abnormalities and structural variations, from radiology reports. We classified these findings into tables and documented them as counts and percentages, using Fisher’s exact test to assess differences between categorical variables. We conducted a statistical analysis using Prism GraphPad software version 10.1.2. The study adhered to ethical guidelines, institutional review board approvals, and patient confidentiality regulations. Results: Exclusion of the coronal STIR sequence led to 83 subjects (30.29%) being classified as within normal limits on MRI examination. 36 patients without abnormalities on T1 and T2 sequences showed abnormalities on the coronal STIR sequence, with 26 cases attributed to spinal pathologies and 10 to non-spinal pathologies. In addition to that, Fisher's exact test demonstrated a significant association between sacroiliitis diagnosis and abnormalities identified solely through the coronal STIR sequence (P < 0.0001). Conclusion: Implementing coronal STIR imaging as part of routine lumbar MRI protocols has the potential to improve patient care by facilitating a more comprehensive evaluation and management of persistent back pain.

Keywords: magnetic resonance imaging, lumber MRI, radiology, neurology

Procedia PDF Downloads 9
489 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 313
488 Developing and integrated Clinical Risk Management Model

Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei

Abstract:

Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.

Keywords: failure modes and effective analysis, risk management, root cause analysis, model

Procedia PDF Downloads 249
487 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace

Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes

Abstract:

Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.

Keywords: malaria, anti-microbials, triazene, resistance

Procedia PDF Downloads 102
486 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 148
485 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 105
484 The Influence of Screen Translation on Creative Audiovisual Writing: A Corpus-Based Approach

Authors: John D. Sanderson

Abstract:

The popularity of American cinema worldwide has contributed to the development of sociolects related to specific film genres in other cultural contexts by means of screen translation, in many cases eluding norms of usage in the target language, a process whose result has come to be known as 'dubbese'. A consequence for the reception in countries where local audiovisual fiction consumption is far lower than American imported productions is that this linguistic construct is preferred, even though it differs from common everyday speech. The iconography of film genres such as science-fiction, western or sword-and-sandal films, for instance, generates linguistic expectations in international audiences who will accept more easily the sociolects assimilated by the continuous reception of American productions, even if the themes, locations, characters, etc., portrayed on screen may belong in origin to other cultures. And the non-normative language (e.g., calques, semantic loans) used in the preferred mode of linguistic transfer, whether it is translation for dubbing or subtitling, has diachronically evolved in many cases into a status of canonized sociolect, not only accepted but also required, by foreign audiences of American films. However, a remarkable step forward is taken when this typology of artificial linguistic constructs starts being used creatively by nationals of these target cultural contexts. In the case of Spain, the success of American sitcoms such as Friends in the 1990s led Spanish television scriptwriters to include in national productions lexical and syntactical indirect borrowings (Anglicisms not formally identifiable as such because they include elements from their own language) in order to target audiences of the former. However, this commercial strategy had already taken place decades earlier when Spain became a favored location for the shooting of foreign films in the early 1960s. The international popularity of the then newly developed sub-genre known as Spaghetti-Western encouraged Spanish investors to produce their own movies, and local scriptwriters made use of the dubbese developed nationally since the advent of sound in film instead of using normative language. As a result, direct Anglicisms, as well as lexical and syntactical borrowings made up the creative writing of these Spanish productions, which also became commercially successful. Interestingly enough, some of these films were even marketed in English-speaking countries as original westerns (some of the names of actors and directors were anglified to that purpose) dubbed into English. The analysis of these 'back translations' will also foreground some semantic distortions that arose in the process. In order to perform the research on these issues, a wide corpus of American films has been used, which chronologically range from Stagecoach (John Ford, 1939) to Django Unchained (Quentin Tarantino, 2012), together with a shorter corpus of Spanish films produced during the golden age of Spaghetti Westerns, from una tumba para el sheriff (Mario Caiano; in English lone and angry man, William Hawkins) to tu fosa será la exacta, amigo (Juan Bosch, 1972; in English my horse, my gun, your widow, John Wood). The methodology of analysis and the conclusions reached could be applied to other genres and other cultural contexts.

Keywords: dubbing, film genre, screen translation, sociolect

Procedia PDF Downloads 170
483 Formulation and Test of a Model to explain the Complexity of Road Accident Events in South Africa

Authors: Dimakatso Machetele, Kowiyou Yessoufou

Abstract:

Whilst several studies indicated that road accident events might be more complex than thought, we have a limited scientific understanding of this complexity in South Africa. The present project proposes and tests a more comprehensive metamodel that integrates multiple causality relationships among variables previously linked to road accidents. This was done by fitting a structural equation model (SEM) to the data collected from various sources. The study also fitted the GARCH Model (Generalized Auto-Regressive Conditional Heteroskedasticity) to predict the future of road accidents in the country. The analysis shows that the number of road accidents has been increasing since 1935. The road fatality rate follows a polynomial shape following the equation: y = -0.0114x²+1.2378x-2.2627 (R²=0.76) with y = death rate and x = year. This trend results in an average death rate of 23.14 deaths per 100,000 people. Furthermore, the analysis shows that the number of crashes could be significantly explained by the total number of vehicles (P < 0.001), number of registered vehicles (P < 0.001), number of unregistered vehicles (P = 0.003) and the population of the country (P < 0.001). As opposed to expectation, the number of driver licenses issued and total distance traveled by vehicles do not correlate significantly with the number of crashes (P > 0.05). Furthermore, the analysis reveals that the number of casualties could be linked significantly to the number of registered vehicles (P < 0.001) and total distance traveled by vehicles (P = 0.03). As for the number of fatal crashes, the analysis reveals that the total number of vehicles (P < 0.001), number of registered (P < 0.001) and unregistered vehicles (P < 0.001), the population of the country (P < 0.001) and the total distance traveled by vehicles (P < 0.001) correlate significantly with the number of fatal crashes. However, the number of casualties and again the number of driver licenses do not seem to determine the number of fatal crashes (P > 0.05). Finally, the number of crashes is predicted to be roughly constant overtime at 617,253 accidents for the next 10 years, with the worse scenario suggesting that this number may reach 1 896 667. The number of casualties was also predicted to be roughly constant at 93 531 overtime, although this number may reach 661 531 in the worst-case scenario. However, although the number of fatal crashes may decrease over time, it is forecasted to reach 11 241 fatal crashes within the next 10 years, with the worse scenario estimated at 19 034 within the same period. Finally, the number of fatalities is also predicted to be roughly constant at 14 739 but may also reach 172 784 in the worse scenario. Overall, the present study reveals the complexity of road accidents and allows us to propose several recommendations aimed to reduce the trend of road accidents, casualties, fatal crashes, and death in South Africa.

Keywords: road accidents, South Africa, statistical modelling, trends

Procedia PDF Downloads 161