Search results for: data mining applications and discovery
25253 Influence of Error Correction Codes on the Quality of Optical Broadband Connections
Authors: Mouna Hemdi, Jamel bel Hadj Tahar
Abstract:
The increasing development of multimedia applications requiring the simultaneous transport of several different services contributes to the evolution of the need for very high-speed network. In this paper, we propose an effective solution to achieve the very high speed while retaining elements of the optical transmission channel. So our study focuses on error correcting codes that aim for quality improvement on duty. We present a comparison of the quality of service for single channels and integrating the code BCH, RS and LDPC in order to find the best code in the different conditions of the transmission.Keywords: code error correction, high speed broadband, optical transmission, information systems security
Procedia PDF Downloads 39725252 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics
Authors: Namasivayam Navaranjan, Eric Dimla
Abstract:
The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.Keywords: bioplastics, plastics, renewable resources, biomass
Procedia PDF Downloads 31325251 Supply Chains Resilience within Machine-Made Rug Producers in Iran
Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz
Abstract:
In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience
Procedia PDF Downloads 16825250 Programming Language Extension Using Structured Query Language for Database Access
Authors: Chapman Eze Nnadozie
Abstract:
Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table
Procedia PDF Downloads 18925249 Impact of Climate Variation on Natural Vegetations and Human Lives in Thar Desert, Pakistan
Authors: Sujo Meghwar, Zulfqar Ali laghari, Kanji Harijan, Muhib Ali Lagari, G. M. Mastoi, Ali Mohammad Rind
Abstract:
Thar Desert is the most populous Desert of the world. Climate variation in Thar Desert has induced an increase in the magnitude of drought. The variation in climate variation has caused a decrease in natural vegetations. Some plant species are eliminated forever. We have applied the SPI (standardized precipitation index) climate model to investigate the drought induced by climate change. We have gathered the anthropogenic response through a developed questionnaire. The data was analyzed in SPSS version 18. The met-data of two meteorological station elaborated by the time series has suggested an increase in temperature from 1-2.5 centigrade, the decrease in rain fall rainfall from 5-25% and reduction in humidity from 5-12 mm in the 20th century. The anthropogenic responses indicate high impact of climate change on human life and vegetations. Triangle data, we have collected, gives a new insight into the understanding of an association between climate change, drought and human activities.Keywords: Thar desert, human impact, vegetations, temperature, rainfall, humidity
Procedia PDF Downloads 40725248 Measures of Phylogenetic Support for Phylogenomic and the Whole Genomes of Two Lungfish Restate Lungfish and Origin of Land Vertebrates
Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou
Abstract:
Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to reassess the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high gene support confidence with confidence intervals exceeding 95%, high internode certainty, and high gene concordance factor. The evidence stems from two datasets containing recently deciphered whole genomes of two lungfish species, as well as five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa diminishes the number of orthologues and leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction (LBA) and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.Keywords: gene support confidence (GSC), origin of land vertebrates, coelacanth, two whole genomes of lungfishes, confidence intervals
Procedia PDF Downloads 9325247 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017
Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey
Abstract:
The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART
Procedia PDF Downloads 21525246 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services
Authors: Carlos V. Gonzalez
Abstract:
Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.Keywords: harm, patients, resilience, safety, mental illness, disability
Procedia PDF Downloads 45125245 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 8525244 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40925243 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 9325242 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers
Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant
Abstract:
Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams
Procedia PDF Downloads 8725241 A Heuristic for the Integrated Production and Distribution Scheduling Problem
Authors: Christian Meinecke, Bernd Scholz-Reiter
Abstract:
The integrated problem of production and distribution scheduling is relevant in many industrial applications. Thus, many heuristics to solve this integrated problem have been developed in the last decade. Most of these heuristics use a sequential working principal or a single decomposition and integration approach to separate and solve sub-problems. A heuristic using a multi-step decomposition and integration approach is presented in this paper and evaluated in a case study. The result show significant improved results compared with sequential scheduling heuristics.Keywords: production and outbound distribution, integrated planning, heuristic, decomposition, integration
Procedia PDF Downloads 43825240 Dielectrophoretic Characterization of Tin Oxide Nanowires for Biotechnology Application
Authors: Ahmad Sabry Mohamad, Kai F. Hoettges, Michael Pycraft Hughes
Abstract:
This study investigates nanowires using Dielectrophoresis (DEP) in non-aqueous suspension of Tin (IV) Oxide (SnO2) nanoparticles dispersed in N,N-dimenthylformamide (DMF). The self assembly of nanowires in DEP impedance spectroscopy can be determined. In this work, dielectrophoretic method was used to measure non-organic molecules for estimating the permittivity and conductivity characteristic of the nanowires. As in aqueous such as salt solution has been dominating the transport of SnO2, which are the wire growth threshold, depend on applied voltage. While DEP assembly of nanowires depend on applied frequency, the applications of dielectrophoretic collection are measured using impedance spectroscopy.Keywords: dielectrophoresis, impedance spectroscopy, nanowires, N, N-dimenthylformamide, SnO2
Procedia PDF Downloads 66725239 Evaluation of Vehicle Classification Categories: Florida Case Study
Authors: Ren Moses, Jaqueline Masaki
Abstract:
This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic
Procedia PDF Downloads 18225238 The Significant of Effective Leadership on Management Growth and Survival: A Case Study of Bunato Limited Company, Ring Road Ibadan
Authors: A. S. Adegoke, O. N. Popoola
Abstract:
The central purpose of management in any organization is that of coordinating the efforts of people towards the achievement of its goal. Effective and productive management is the function of leadership. Leadership plays a critical role in helping groups, organizations and societies to achieve their goals. Factors considered to make leadership to be effective are intelligence, social maturity, inner motivation and achievement drives and lastly, human relations attitudes. The factors affecting leadership style and effectiveness were examined. Also, the study examined which of the various leadership style best befits an organization and discussed the ways in which the style was determined. In order to meet the objectives of this study, different types of methods of data gathering were carried out. The methods include data from primary and secondary sources. The primary sources include personal interview, personal observation, and questionnaire while data from secondary sources were derived from various books, journal write up and other documentary records. Data were collected from respondents through questionnaire, and the field research carried out through oral interview to test each of the related hypotheses. From the data analysed it was determined that 45% strongly agreed that leadership traits are inborn not acquired and 28.3% agreed that leadership traits are inborn, while 11.7% and 10% strongly disagreed and disagreed respectively and 5% were undecided. 48.4% strongly agreed, and 43.3% agreed that environmental factors determined the appropriate style of leadership to be employed while 3.3% strongly disagreed, 1.7% disagreed and 3.3% were undecided. From the study, no single style of leadership is appropriate in any situation instead of concentrating on single leadership style; leader can vary approaches depending on forces in the leaders, characteristic of the subordinates, situational forces of the organization, lastly the expectations and behaviour of superior.Keywords: hypothesis, leadership, management, organization
Procedia PDF Downloads 14625237 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language
Authors: Ghazal Faraj, András Micsik
Abstract:
Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping
Procedia PDF Downloads 25725236 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 16225235 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 14725234 Using Risk Management Indicators in Decision Tree Analysis
Authors: Adel Ali Elshaibani
Abstract:
Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions
Procedia PDF Downloads 6425233 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators
Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel
Abstract:
The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.Keywords: Algarve, development, environmental indicators, observatory, sociocultural indicators, sustainability, tourism
Procedia PDF Downloads 18325232 Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization
Authors: Yodai Ashikubo, Toshiaki Suzuki, Satoshi Kouya, Mitsuya Motohashi
Abstract:
Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices.Keywords: silicon roll, anodization, fine bubble, microstructure
Procedia PDF Downloads 3525231 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 3325230 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 10025229 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.
Procedia PDF Downloads 12625228 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56525227 Gamification as a Tool for Influencing Customers' Behaviour
Authors: Beata Zatwarnicka-Madura
Abstract:
The objective of the article was to identify the impacts of gamification on customers' behaviour. The most important applications of games in marketing and mechanisms of gamification are presented in the article. A detailed analysis of the influence of gamification on customers using two brands, Foursquare and Nike, was also presented. Research studies using auditory survey methods were carried out among 176 young respondents, who are potential targets of gamification. The studies confirmed a huge participation of young people in customer loyalty programs with relatively low participation in other gamification-based marketing activities. The research findings clearly indicate that gamification mechanisms are the most attractive.Keywords: customer loyalty, games, gamification, social aspects
Procedia PDF Downloads 49325226 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System
Authors: Aliya Sekenova, Vyacheslav Ogay
Abstract:
The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system
Procedia PDF Downloads 33125225 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia
Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew
Abstract:
Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia
Procedia PDF Downloads 7725224 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil
Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz
Abstract:
Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.Keywords: biplane, oblique wing, sweep angle, supercritical airfoil
Procedia PDF Downloads 280