Search results for: explicit solution
489 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 12488 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing
Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel
Abstract:
There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.Keywords: climate change, resilience, remote sensing, demographic and health surveys
Procedia PDF Downloads 165487 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards
Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah
Abstract:
Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation
Procedia PDF Downloads 376486 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 429485 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning
Authors: Shayan Mohajer Hamidi
Abstract:
Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning
Procedia PDF Downloads 75484 Glass-Ceramics for Emission in the IR Region
Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz
Abstract:
Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.Keywords: glass, glass-ceramics, multicomponent systems, NIR emission
Procedia PDF Downloads 19483 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt
Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata
Abstract:
Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically
Procedia PDF Downloads 303482 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste
Authors: Maciej Szelag
Abstract:
The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS
Procedia PDF Downloads 356481 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration
Authors: Pedro G. Morouço
Abstract:
One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering
Procedia PDF Downloads 166480 Deasphalting of Crude Oil by Extraction Method
Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov
Abstract:
The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy
Procedia PDF Downloads 242479 The Impact of Artificial Intelligence on Food Industry
Authors: George Hanna Abdelmelek Henien
Abstract:
Quality and safety issues are common in Ethiopia's food processing industry, which can negatively impact consumers' health and livelihoods. The country is known for its various agricultural products that are important to the economy. However, food quality and safety policies and management practices in the food processing industry have led to many health problems, foodborne illnesses and economic losses. This article aims to show the causes and consequences of food safety and quality problems in the food processing industry in Ethiopia and discuss possible solutions to solve them. One of the main reasons for food quality and safety in Ethiopia's food processing industry is the lack of adequate regulation and enforcement mechanisms. Inadequate food safety and quality policies have led to inefficiencies in food production. Additionally, the failure to monitor and enforce existing regulations has created a good opportunity for unscrupulous companies to engage in harmful practices that endanger the lives of citizens. The impact on food quality and safety is significant due to loss of life, high medical costs, and loss of consumer confidence in the food processing industry. Foodborne diseases such as diarrhoea, typhoid and cholera are common in Ethiopia, and food quality and safety play an important role in . Additionally, food recalls due to contamination or contamination often cause significant economic losses in the food processing industry. To solve these problems, the Ethiopian government began taking measures to improve food quality and safety in the food processing industry. One of the most prominent initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to monitor and control the quality and safety of food and beverage products in the country. EFDA has implemented many measures to improve food safety, such as carrying out routine inspections, monitoring the import of food products and implementing labeling requirements. Another solution that can improve food quality and safety in the food processing industry in Ethiopia is the implementation of food safety management system (FSMS). FSMS is a set of procedures and policies designed to identify, assess and control food safety risks during food processing. Implementing a FSMS can help companies in the food processing industry identify and address potential risks before they harm consumers. Additionally, implementing an FSMS can help companies comply with current safety and security regulations. Consequently, improving food safety policy and management system in Ethiopia's food processing industry is important to protect people's health and improve the country's economy. . Addressing the root causes of food quality and safety and implementing practical solutions that can help improve the overall food safety and quality in the country, such as establishing regulatory bodies and implementing food management systems.Keywords: food quality, food safety, policy, management system, food processing industry food traceability, industry 4.0, internet of things, block chain, best worst method, marcos
Procedia PDF Downloads 63478 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 164477 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption
Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu
Abstract:
By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture
Procedia PDF Downloads 377476 Potential Cross-Protection Roles of Chitooligosaccharide in Alleviating Cd Toxicity in Edible Rape (Brassica rapa L.)
Authors: Haiying Zong, Yi Yuan, Pengcheng Li
Abstract:
Cadmium (Cd), one of the toxic heavy metals, has high solubility and mobility in agricultural soils and is readily taken up by roots and transported to the vegetative and reproductive organs which can cause deleterious effects on crop yield and quality. Excess Cd in plants can interfere with many metabolic processes, such as photosynthesis, transpiration, respiration or nutrients homeostasis. Generally, the main methods to reduce Cd accumulation in plants are to decrease the concentration of Cd in the soil solution through reduction of Cd influx into the soil system, site selection, and management practices. However, these approaches can be very costly and consume a lot of energy Therefore, it is critical to develop effective approaches to reduce the Cd concentration in plants. It is proved that chitooligosaccharide (COS) can enhance the plant's tolerance to abiotic stress including drought stress, salinity stress, and toxic metal stress. However, so far little information is known about whether foliar application with COS modulates Cd-induced toxicity in plants. The metal detoxification processes of plants treated with COS also remain unclear. In this study, edible rape (Brassica rapa L.), one of the most widely consumed leafy vegetables, was selected as an experimental mode plant. The effect of foliar application with COS on reducing Cd accumulation in edible rape was investigated. Moreover, Cd subcellular distribution pattern in response to Cd stress in the rape plant sprayed with COS was further tested in order to explore the potential detoxification mechanisms in plants. The results demonstrated that spraying COS at different concentrations (25, 50,100 and 200 mg L-1) possess diverse functions including growth-promoting,chlorophyll contents-enhancing, malondialdehyde (MDA) level-decreasing in leaves, Cd2+ concentration-decreasingin shoots and roots of edible rape under Cd stress. In addition, it was found that COS can also dramatically improve superoxide dismutase (SOD) activity, catalase (CAT) activity and peroxidase (POX) activity of edible rape leaves. The relievingeffect of COS was related to theconcentration and COS with 50-100 mg L-1 displayed the best activity. Furtherly, theexperiments results exhibitedthat COS could decrease the proportion of Cd in the organelle fraction of leaves by 40.1% while enhance the proportion of Cd in the soluble fraction by 13.2% at the concentration of 50 mg L-1. The above results showed that COS may have thepotential to improve plant resistance to Cd via promoting antioxidant enzyme activities and altering Cd subcellular distribution. All the results described here open up a new way to study the protection role of COS in alleviating Cd tolerance and lay the foundation for future research about the detoxification mechanism at subcellular level.Keywords: chitooligosaccharide, cadmium, edible rape (Brassica rapa L.), subcellular distribution
Procedia PDF Downloads 294475 UNHCR and the International Refugee Protection: An Analysis of Its Actions in Protecting Mozambican Refugees in Malawi
Authors: Marcia Teresa Gildo
Abstract:
The United Nations High Commissioner for Refugees (UNHCR) is responsible to provide international protection and humanitarian assistance to refugees and to seek permanent solutions to their situation. To fulfil this mandate, the agency works in collaboration with its partners and governments. This paper aims to analyse the agency's actions to protect and provide assistance to Mozambican refugees in Malawi. Since July 2015, approximately 12.000 people have fled Mozambique to neighbouring Malawi due to the political-military conflict between the government of Mozambique and RENAMO (the country’s largest opposition party). This led to a series of military clashes between the two parties and the consequent flight of some Mozambicans to Malawi, in search of asylum. Most arrived from the province of Tete, in the central region of Mozambique, and, to a lesser extent, from the province of Zambezia. The asylum seekers arrived in small groups and settled in the village of Kapise in the Mwanza district of Thambani, as well as in Chikwawa and Nsanje districts in Malawi. UNHCR led an interinstitutional response action to manage the flow of Mozambican asylum seekers to Malawi. In view of these aspects and the ongoing challenge of protecting refugees and finding permanent solutions to their situation, UNHCR remains an indispensable international organization. However, there are significant gaps in the international refugee protection regime, and there have been many occasions when UNHCR has failed to fulfill its mandate. The analysis was carried out through qualitative research methods and techniques based essentially on consultation of books, newspapers and scientific articles, television and journalistic reports and interviews with the people who were involved in the process. From the data obtained, it was concluded that UNHCR worked in coordination with its partners and the government of Malawi to provide protection and emergency assistance to the refugees. However, existing funds covered only the immediate needs of refugees, more funds had to be allocated. That was made through an interinstitutional appeal. Although the funds allocated were not sufficient, they allowed the agency to protect and assist the refugees until a permanent solution was found. UNHCR also worked in coordination with the governments of Malawi and Mozambique so that a tripartite agreement was signed between the parties for the voluntary repatriation of Mozambican refugees, since security conditions were guaranteed and the refugees had expressed their willingness to return to their country of origin. UNHCR's actions to protect Mozambican refugees in Malawi have enabled humanitarian conditions to be respected and the rights of refugees to be guaranteed. Cooperation with the different actors involved in the response has allowed UNHCR to fulfil its mandate.Keywords: assistance , cooperation, international protection, refugees
Procedia PDF Downloads 110474 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 435473 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products
Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya
Abstract:
Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.Keywords: advance glycation endproducts, glycation, gold nano particle, sensor
Procedia PDF Downloads 304472 Nascent Federalism in Nepal: An Observational Review in its Evolution
Authors: C. Shekhar Parajulee
Abstract:
Nepal practiced a centralized unitary governing system for a long and has gone through the federal system after the promulgation of the new constitution on 20 September 2015. There is a big paradigm shift in terms of governance after it. Now, there are three levels of governments, one federal government in the center, seven provincial governments and 753 local governments. Federalism refers to a political governing system with multiple tiers of government working together with coordination. It is preferred for self and shared rule. Though it has opened the door for rights of the people, political stability, state restructuring, and sustainable peace and development, there are many prospects and challenges for its proper implementation. This research analyzes the discourses of federalism implementation in Nepal with special reference to one of seven provinces, Gandaki. Federalism is a new phenomenon in Nepali politics and informed debates on it are required for its right evolution. This research will add value in this regard. Moreover, tracking its evolution and the exploration of the attitudes and behaviors of key actors and stakeholders in a new experiment of a new governing system is also important. The administrative and political system of Gandaki province in terms of service delivery and development will critically be examined. Besides demonstrating the performances of the provincial government and assembly, it will analyze the inter-governmental relation of Gandaki with the other two tiers of government. For this research, people from provincial and local governments (elected representatives and government employees), provincial assembly members, academicians, civil society leaders and journalists are being interviewed. The interview findings will be analyzed by supplementing with published documents. Just going into the federal structure is not the solution. As in the case of other provincial governments, Gandaki had also to start from scratch. It gradually took a shape of government and has been functioning sluggishly. The provincial government has many challenges ahead, which has badly hindered its plans and actions. Additionally, fundamental laws, infrastructures and human resources are found to be insufficient at the sub-national level. Lack of clarity in the jurisdiction is another main challenge. The Nepali Constitution assumes cooperation, coexistence and coordination as the fundamental principles of federalism which, unfortunately, appear to be lacking among the three tiers of government despite their efforts. Though the devolution of power to sub-national governments is essential for the successful implementation of federalism, it has apparently been delayed due to the centralized mentality of bureaucracy as well as a political leader. This research will highlight the reasons for the delay in the implementation of federalism. There might be multiple underlying reasons for the slow pace of implementation of federalism and identifying them is very tough. Moreover, the federal spirit is found to be absent in the main players of today's political system, which is a big irony. So, there are some doubts about whether the federal system in Nepal is just a keepsake or a substantive.Keywords: federalism, inter-governmental relations, Nepal, provincial government
Procedia PDF Downloads 189471 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution
Authors: Peter G. Hollis, Kim G. Clarke
Abstract:
Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag
Procedia PDF Downloads 266470 The Importance of Urban Pattern and Planting Design in Urban Transformation Projects
Authors: Mustafa Var, Yasin Kültiğin Yaman, Elif Berna Var, Müberra Pulatkan
Abstract:
This study deals with real application of an urban transformation project in Trabzon, Turkey. It aims to highlight the significance of using native species in terms of planting design of transformation projects which will also promote sustainability of urban identity. Urban identity is a phenomenon shaped not only by physical, but also by natural, spatial, social, historical and cultural factors. Urban areas face with continuous change which can be whether positive or negative way. If it occurs in a negative way that may have some destructive effects on urban identity. To solve this problematic issue, urban renewal movements initally started after 1840s around the world especially in the cities with ports. This process later followed by the places where people suffered a lot from fires and has expanded to all over the world. In Turkey, those processes have been experienced mostly after 1980s as country experienced the worst effects of unplanned urbanization especially in 1950-1990 period. Also old squares, streets, meeting points, green areas, Ottoman bazaars have changed slowly. This change was resulted in alienation of inhabitants to their environments. As a solution, several actions were taken like Mass Housing Laws which was enacted in 1981 and 1984 or urban transformation projects. Although projects between 1990-2000 were tried to satisfy the expectations of local inhabitants by the help of several design solutions to promote cultural identity; unfortunately those modern projects has also been resulted in alienation of urban environments to the inhabitants. Those projects were initially done by TOKI (Housing Development Administration of Turkey) and later followed by the Ministry of Environment and Urbanization after 2011. Although they had significant potentials to create healthy urban environments, they could not use this opportunity in an effective way. The reason for their failure is that their architectural styles and planting designs are unrespectful to local identity and environments. Generally, it can be said that the most of the urban transformation projects implementing in Turkey nearly have no concerns about the locality. However, those projects can be used as a positive tool for enhanching the urban identity of cities by means of local planting material. For instance, Kyoto can be identified by Japanese Maple trees or Seattle can be specified by Dahlia. In the same way, in Turkey, Istanbul city can be identified by Judas and Stone Pine trees or Giresun city can be identified by Cherry trees. Thus, in this paper, the importance of conserving urban identity is discussed specificly with the help of using local planting elements. After revealing the mistakes that are made during urban transformation projects, the techniques and design criterias for preserving and promoting urban identity are examined. In the end, it is emphasized that every city should have their own original, local character and specific planting design which can be used for highlighting its identity as well as architectural elements.Keywords: urban identity, urban transformation, planting design, landscape architecture
Procedia PDF Downloads 546469 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 110468 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services
Authors: Pariya Sheykhmaleki, Debajyoti Pati
Abstract:
Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth
Procedia PDF Downloads 77467 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces
Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin
Abstract:
Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.Keywords: surface contamination, sampling kit, analytical method, sensitivity
Procedia PDF Downloads 132466 Fluctuations in Radical Approaches to State Ownership of the Means of Production Over the Twentieth Century
Authors: Tom Turner
Abstract:
The recent financial crisis in 2008 and the growing inequality in developed industrial societies would appear to present significant challenges to capitalism and the free market. Yet there have been few substantial mainstream political or economic challenges to the dominant capitalist and market paradigm to-date. There is no dearth of critical and theoretical (academic) analyses regarding the prevailing systems failures. Yet despite the growing inequality in the developed industrial societies and the financial crisis in 2008 few commentators have advocated the comprehensive socialization or state ownership of the means of production to our knowledge – a core principle of radical Marxism in the 19th and early part of the 20th century. Undoubtedly the experience in the Soviet Union and satellite countries in the 20th century has cast a dark shadow over the notion of centrally controlled economies and state ownership of the means of production. In this paper, we explore the history of a doctrine advocating the socialization or state ownership of the means of production that was central to Marxism and socialism generally. Indeed this doctrine provoked an intense and often acrimonious debate especially for left-wing parties throughout the 20th century. The debate within the political economy tradition has historically tended to divide into a radical and a revisionist approach to changing or reforming capitalism. The radical perspective views the conflict of interest between capital and labor as a persistent and insoluble feature of a capitalist society and advocates the public or state ownership of the means of production. Alternatively, the revisionist perspective focuses on issues of distribution rather than production and emphasizes the possibility of compromise between capital and labor in capitalist societies. Over the 20th century, the radical perspective has faded and even the social democratic revisionist tradition has declined in recent years. We conclude with the major challenges that confront both the radical and revisionist perspectives in the development of viable policy agendas in mature developed democratic societies. Additionally, we consider whether state ownership of the means of production still has relevance in the 21st century and to what extent state ownership is off the agenda as a political issue in the political mainstream in developed industrial societies. A central argument in the paper is that state ownership of the means of production is unlikely to feature as either a practical or theoretical solution to the problems of capitalism post the financial crisis among mainstream political parties of the left. Although the focus here is solely on the shifting views of the radical and revisionist socialist perspectives in the western European tradition the analysis has relevance for the wider socialist movement.Keywords: sate ownership, ownership means of production, radicals, revisionists
Procedia PDF Downloads 119465 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent
Authors: John T. Leman, James Gibson, Peter J. Bonitatibus
Abstract:
There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization
Procedia PDF Downloads 37464 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 260463 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy
Authors: Chen Yuan, Nick Green, Stuart Blackburn
Abstract:
The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting
Procedia PDF Downloads 113462 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application
Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job
Abstract:
In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.Keywords: cell line, chrome, genotoxicity, leather, natural rubber
Procedia PDF Downloads 196461 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 233460 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 114