Search results for: interruption cost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6142

Search results for: interruption cost

562 The Effect of Finding and Development Costs and Gas Price on Basins in the Barnett Shale

Authors: Michael Kenomore, Mohamed Hassan, Amjad Shah, Hom Dhakal

Abstract:

Shale gas reservoirs have been of greater importance compared to shale oil reservoirs since 2009 and with the current nature of the oil market, understanding the technical and economic performance of shale gas reservoirs is of importance. Using the Barnett shale as a case study, an economic model was developed to quantify the effect of finding and development costs and gas prices on the basins in the Barnett shale using net present value as an evaluation parameter. A rate of return of 20% and a payback period of 60 months or less was used as the investment hurdle in the model. The Barnett was split into four basins (Strawn Basin, Ouachita Folded Belt, Forth-worth Syncline and Bend-arch Basin) with analysis conducted on each of the basin to provide a holistic outlook. The dataset consisted of only horizontal wells that started production from 2008 to at most 2015 with 1835 wells coming from the strawn basin, 137 wells from the Ouachita folded belt, 55 wells from the bend-arch basin and 724 wells from the forth-worth syncline. The data was analyzed initially on Microsoft Excel to determine the estimated ultimate recoverable (EUR). The range of EUR from each basin were loaded in the Palisade Risk software and a log normal distribution typical of Barnett shale wells was fitted to the dataset. Monte Carlo simulation was then carried out over a 1000 iterations to obtain a cumulative distribution plot showing the probabilistic distribution of EUR for each basin. From the cumulative distribution plot, the P10, P50 and P90 EUR values for each basin were used in the economic model. Gas production from an individual well with a EUR similar to the calculated EUR was chosen and rescaled to fit the calculated EUR values for each basin at the respective percentiles i.e. P10, P50 and P90. The rescaled production was entered into the economic model to determine the effect of the finding and development cost and gas price on the net present value (10% discount rate/year) as well as also determine the scenario that satisfied the proposed investment hurdle. The finding and development costs used in this paper (assumed to consist only of the drilling and completion costs) were £1 million, £2 million and £4 million while the gas price was varied from $2/MCF-$13/MCF based on Henry Hub spot prices from 2008-2015. One of the major findings in this study was that wells in the bend-arch basin were least economic, higher gas prices are needed in basins containing non-core counties and 90% of the Barnet shale wells were not economic at all finding and development costs irrespective of the gas price in all the basins. This study helps to determine the percentage of wells that are economic at different range of costs and gas prices, determine the basins that are most economic and the wells that satisfy the investment hurdle.

Keywords: shale gas, Barnett shale, unconventional gas, estimated ultimate recoverable

Procedia PDF Downloads 302
561 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 173
560 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 188
559 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
558 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics

Authors: Weikang Gong, Chunhua Li

Abstract:

Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.

Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure

Procedia PDF Downloads 121
557 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 174
556 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.

Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 257
555 Upward Spread Forced Smoldering Phenomenon: Effects and Applications

Authors: Akshita Swaminathan, Vinayak Malhotra

Abstract:

Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.

Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering

Procedia PDF Downloads 144
554 Examining Smallholder Farmers’ Perceptions of Climate Change and Barriers to Strategic Adaptation in Todee District, Liberia

Authors: Joe Dorbor Wuokolo

Abstract:

Thousands of smallholder farmers in Todee District, Montserrado county, are currently vulnerable to the negative impact of climate change. The district, which is the agricultural hot spot for the county, is faced with unfavorable changes in the daily temperature due to climate change. Farmers in the district have observed a dramatic change in the ratio of rainfall to sunshine, which has caused a chilling effect on their crop yields. However, there is a lack of documentation regarding how farmers perceive and respond to these changes and challenges. A study was conducted in the region to examine the perceptions of smallholder farmers regarding the negative impact of climate change, the adaptation strategies practice, and the barriers that hinder the process of advancing adaptation strategy. On purpose, a sample of 41 respondents from five towns was selected, including five town chiefs, five youth leaders, five women leaders, and sixteen community members. Women and youth leaders were specifically chosen to provide gender balance and enhance the quality of the investigation. Additionally, to validate the barriers farmers face during adaptation to climate change, this study interviewed eight experts from local and international organizations and government ministries and agencies involved in climate change and agricultural programs on what they perceived as the major barrier in both local and national level that impede farmers adaptation to climate change impact. SPSS was used to code the data, and descriptive statistics were used to analyze the data. The weighted average index (WAI) was used to rank adaptation strategies and the perceived importance of adaptation practices among farmers. On a scale from 0 to 3, 0 indicates the least important technique, and 3 indicates the most effective technique. In addition, the Problem Confrontation Index (PCI) was used to rank the barriers that prevented farmers from implementing adaptation measures. According to the findings, approximately 60% of all respondents considered the use of irrigation systems to be the most effective adaptation strategy, with drought-resistant varieties making up 30% of the total. Additionally, 80% of respondents placed a high value on drought-resistant varieties, while 63% percent placed it on irrigation practices. In addition, 78% of farmers ranked and indicated that unpredictability of the weather is the most significant barrier to their adaptation strategies, followed by the high cost of farm inputs and lack of access to financing facilities. 80% of respondents believe that the long-term changes in precipitation (rainfall) and temperature (hotness) are accelerating. This suggests that decision-makers should adopt policies and increase the capacity of smallholder farmers to adapt to the negative impact of climate change in order to ensure sustainable food production.

Keywords: adaptation strategies, climate change, farmers’ perception, smallholder farmers

Procedia PDF Downloads 82
553 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 96
552 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 132
551 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery

Authors: Mark Jackson

Abstract:

Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.

Keywords: policing, reactive, proactive, models, efficacy

Procedia PDF Downloads 483
550 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
549 Financial Burden of Occupational Slip and Fall Incidences in Taiwan

Authors: Kai Way Li, Lang Gan

Abstract:

Slip &Fall are common in Taiwan. They could result in injuries and even fatalities. Official statistics indicate that more than 15% of all occupational incidences were slip/fall related. All the workers in Taiwan are required by the law to join the worker’s insurance program administered by the Bureau of Labor Insurance (BLI). The BLI is a government agency under the supervision of the Ministry of Labor. Workers claim with the BLI for insurance compensations when they suffer fatalities or injuries at work. Injuries statistics based on worker’s compensation claims were rarely studied. The objective of this study was to quantify the injury statistics and financial cost due to slip-fall incidences based on the BLI compensation records. Compensation records in the BLI during 2007 to 2013 were retrieved. All the original application forms, approval opinions, results for worker’s compensations were in hardcopy and were stored in the BLI warehouses. Xerox copies of the claims, excluding the personal information of the applicants (or the victim if passed away), were obtained. The content in the filing forms were coded in an Excel worksheet for further analyses. Descriptive statistics were performed to analyze the data. There were a total of 35,024 claims including 82 deaths, 878 disabilities, and 34,064 injuries/illnesses which were slip/fall related. It was found that the average losses for the death cases were 40 months. The total dollar amount for these cases paid was 86,913,195 NTD. For the disability cases, the average losses were 367.36 days. The total dollar amount for these cases paid was almost 2.6 times of those for the death cases (233,324,004 NTD). For the injury/illness cases, the average losses for the illness cases were 58.78 days. The total dollar amount for these cases paid was approximately 13 times of those of the death cases (1134,850,821 NTD). For the applicants/victims, 52.3% were males. There were more males than females for the deaths, disability, and injury/illness cases. Most (57.8%) of the female victims were between 45 to 59 years old. Most of the male victims (62.6%) were, on the other hand, between 25 to 39 years old. Most of the victims were in manufacturing industry (26.41%), next the construction industry (22.20%), and next the retail industry (13.69%). For the fatality cases, head injury was the main problem for immediate or eventual death (74.4%). For the disability case, foot (17.46%) and knee (9.05%) injuries were the leading problems. The compensation claims other than fatality and disability were mainly associated with injuries of the foot (18%), hand (12.87%), knee (10.42%), back (8.83%), and shoulder (6.77%). The slip/fall cases studied indicate that the ratios among the death, disability, and injury/illness counts were 1:10:415. The ratios of dollar amount paid by the BLI for the three categories were 1:2.6:13. Such results indicate the significance of slip-fall incidences resulting in different severity. Such information should be incorporated in to slip-fall prevention program in industry.

Keywords: epidemiology, slip and fall, social burden, workers’ compensation

Procedia PDF Downloads 323
548 Food Security in Germany: Inclusion of the Private Sector through Law Reform Faces Challenges

Authors: Agnetha Schuchardt, Jennifer Hartmann, Laura Schulte, Roman Peperhove, Lars Gerhold

Abstract:

If critical infrastructures fail, even for a short period of time, it can have significant negative consequences for the affected population. This is especially true for the food sector that is strongly interlinked with other sectors like the power supply. A blackout could lead to several cities being without food supply for numerous days, simply because cash register systems do no longer work properly. Following the public opinion, securing the food supply in emergencies is considered a task of the state, however, in the German context, the key players are private enterprises and private households. Both are not aware of their responsibility and both cannot be forced to take any preventive measures prior to an emergency. This problem became evident to officials and politicians so that the law covering food security was revised in order to include private stakeholders into mitigation processes. The paper will present a scientific review of governmental and regulatory literature. The focus is the inclusion of the food industry through a law reform and the challenges that still exist. Together with legal experts, an analysis of regulations will be presented that explains the development of the law reform concerning food security and emergency storage in Germany. The main findings are that the existing public food emergency storage is out-dated, insufficient and too expensive. The state is required to protect food as a critical infrastructure but does not have the capacities to live up to this role. Through a law reform in 2017, new structures should to established. The innovation was to include the private sector into the civil defense concept since it has the required knowledge and experience. But the food industry is still reluctant. Preventive measures do not serve economic purposes – on the contrary, they cost money. The paper will discuss respective examples like equipping supermarkets with emergency power supply or self-sufficient cash register systems and why the state is not willing to cover the costs of these measures, but neither is the economy. The biggest problem with the new law is that private enterprises can only be forced to support food security if the state of emergency has occurred already and not one minute earlier. The paper will cover two main results: the literature review and an expert workshop that will be conducted in summer 2018 with stakeholders from different parts of the food supply chain as well as officials of the public food emergency concept. The results from this participative process will be presented and recommendations will be offered that show how the private economy could be better included into a modern food emergency concept (e. g. tax reductions for stockpiling).

Keywords: critical infrastructure, disaster control, emergency food storage, food security, private economy, resilience

Procedia PDF Downloads 186
547 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards

Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah

Abstract:

Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation

Procedia PDF Downloads 376
546 Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems

Authors: Ravi Prakash Maurya, Munaswamyreddygari Sreedhar

Abstract:

The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem.

Keywords: cabbage ecosystem, organic amendments, rhizosphere microbiome, pest and natural enemy diversity

Procedia PDF Downloads 13
545 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 290
544 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
543 A Markov Model for the Elderly Disability Transition and Related Factors in China

Authors: Huimin Liu, Li Xiang, Yue Liu, Jing Wang

Abstract:

Background: As one of typical case for the developing countries who are stepping into the aging times globally, more and more older people in China might face the problem of which they could not maintain normal life due to the functional disability. While the government take efforts to build long-term care system and further carry out related policies for the core concept, there is still lack of strong evidence to evaluating the profile of disability states in the elderly population and its transition rate. It has been proved that disability is a dynamic condition of the person rather than irreversible so it means possible to intervene timely on them who might be in a risk of severe disability. Objective: The aim of this study was to depict the picture of the disability transferring status of the older people in China, and then find out individual characteristics that change the state of disability to provide theory basis for disability prevention and early intervention among elderly people. Methods: Data for this study came from the 2011 baseline survey and the 2013 follow-up survey of the China Health and Retirement Longitudinal Study (CHARLS). Normal ADL function, 1~2 ADLs disability,3 or above ADLs disability and death were defined from state 1 to state 4. Multi-state Markov model was applied and the four-state homogeneous model with discrete states and discrete times from two visits follow-up data was constructed to explore factors for various progressive stages. We modeled the effect of explanatory variables on the rates of transition by using a proportional intensities model with covariate, such as gender. Result: In the total sample, state 2 constituent ratio is nearly about 17.0%, while state 3 proportion is blow the former, accounting for 8.5%. Moreover, ADL disability statistics difference is not obvious between two years. About half of the state 2 in 2011 improved to become normal in 2013 even though they get elder. However, state 3 transferred into the proportion of death increased obviously, closed to the proportion back to state 2 or normal functions. From the estimated intensities, we see the older people are eleven times as likely to develop at 1~2 ADLs disability than dying. After disability onset (state 2), progression to state 3 is 30% more likely than recovery. Once in state 3, a mean of 0.76 years is spent before death or recovery. In this model, a typical person in state 2 has a probability of 0.5 of disability-free one year from now while the moderate disabled or above has a probability of 0.14 being dead. Conclusion: On the long-term care cost considerations, preventive programs for delay the disability progression of the elderly could be adopted based on the current disabled state and main factors of each stage. And in general terms, those focusing elderly individuals who are moderate or above disabled should go first.

Keywords: Markov model, elderly people, disability, transition intensity

Procedia PDF Downloads 290
542 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
541 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 228
540 Investigation and Comprehensive Benefit Analysis of 11 Typical Polar-Based Agroforestry Models Based on Analytic Hierarchy Process in Anhui Province, Eastern China

Authors: Zhihua Cao, Hongfei Zhao, Zhongneng Wu

Abstract:

The development of polar-based agroforestry was necessary due to the influence of the timber market environment in China, which can promote the coordinated development of forestry and agriculture, and gain remarkable ecological, economic and social benefits. The main agroforestry models of the main poplar planting area in Huaibei plain and along the Yangtze River plain were carried out. 11 typical management models of poplar were selected to sum up: pure poplar forest, poplar-rape-soybean, poplar-wheat-soybean, poplar-rape-cotton, poplar-wheat, poplar-chicken, poplar-duck, poplar-sheep, poplar-Agaricus blazei, poplar-oil peony, poplar-fish, represented by M0-M10, respectively. 12 indexes related with economic, ecological and social benefits (annual average cost, net income, ratio of output to investment, payback period of investment, land utilization ratio, utilization ratio of light energy, improvement and system stability of ecological and production environment, product richness, labor capacity, cultural quality of labor force, sustainability) were screened out to carry on the comprehensive evaluation and analysis to 11 kinds of typical agroforestry models based on analytic hierarchy process (AHP). The results showed that the economic benefit of each agroforestry model was in the order of: M8 > M6 > M9 > M7 > M5 > M10 > M4 > M1 > M2 > M3 > M0. The economic benefit of poplar-A. blazei model was the highest (332, 800 RMB / hm²), followed by poplar-duck and poplar-oil peony model (109, 820RMB /hm², 5, 7226 RMB /hm²). The order of comprehensive benefit was: M8 > M4 > M9 > M6 > M1 > M2 > M3 > M7 > M5 > M10 > M0. The economic benefit and comprehensive benefit of each agroforestry model were higher than that of pure poplar forest. The comprehensive benefit of poplar-A. blazei model was the highest, and that of poplar-wheat model ranked second, while its economic benefit was not high. Next were poplar-oil peony and poplar-duck models. It was suggested that the model of poplar-wheat should be adopted in the plain along the Yangtze River, and the whole cycle mode of poplar-grain, popalr-A. blazei, or poplar-oil peony should be adopted in Huaibei plain, northern Anhui. Furthermore, wheat, rape, and soybean are the main crops before the stand was closed; the agroforestry model of edible fungus or Chinese herbal medicine can be carried out when the stand was closed in order to maximize the comprehensive benefit. The purpose of this paper is to provide a reference for forest farmers in the selection of poplar agroforestry model in the future and to provide the basic data for the sustainable and efficient study of poplar agroforestry in Anhui province, eastern China.

Keywords: agroforestry, analytic hierarchy process (AHP), comprehensive benefit, model, poplar

Procedia PDF Downloads 165
539 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model

Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki

Abstract:

As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.

Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China

Procedia PDF Downloads 287
538 The Implementation of Human Resource Information System in the Public Sector: An Exploratory Study of Perceived Benefits and Challenges

Authors: Aneeqa Suhail, Shabana Naveed

Abstract:

The public sector (in both developed and developing countries) has gone through various waves of radical reforms in recent decades. In Pakistan, under the influence of New Public Management(NPM) Reforms; best practices of private sector are introduced in the public sector to modernize public organizations. Human Resource Information System (HRIS) has been popular in the private sector and proven to be a successful system, therefore it is being adopted in the public sector too. However, implementation of private business practices in public organizations us very challenging due to differences in context. This implementation gets further critical in Pakistan due to a centralizing tendency and lack of autonomy in public organizations. Adoption of HRIS by public organizations in Pakistan raises several questions: What challenges are faced by public organizations in implementation of HRIS? Are benefits of HRIS such as efficiency, process integration and cost reduction achieved? How is the previous system improved with this change and what are the impacts? Yet, it is an under-researched topic, especially in public enterprises. This study contributes to the existing body of knowledge by empirically exploring benefits and challenges of implementation of HRIS in public organizations. The research adopts a case study approach and uses qualitative data based on in-depth interviews conducted at various levels in the hierarchy including top management, departmental heads and employees. The unit of analysis is LESCO, the Lahore Electric Supply Company, a state-owned entity that generates, transmits and distributes electricity to 4 big cities in Punjab, Pakistan. The findings of the study show that LESCO has not achieved the benefits of HRIS as established in literature. The implementation process remained quite slow and costly. Various functions of HR are still in isolation and integration is a big challenge for the organization. Although the data is automated, the previous system of manually record maintenance and paperwork is still in work, resulting in the presence of parallel practices. The findings also identified resistance to change from top management and labor workforce, lack of commitment and technical knowledge, and costly vendors as major barriers that affect the effective implementation of HRIS. The paper suggests some potential actions to overcome these barriers and to enhance effective implementation of HR-technology. The findings are explained in light of an institutional logics perspective. HRIS’ new logic of automated and integrated HR system is in sharp contrast with the prevailing logic of process-oriented manual data maintenance, leading to resistance to change and deadlock.

Keywords: human resource information system, technological changes, state-owned enterprise, implementation challenges

Procedia PDF Downloads 144
537 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 119
536 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem

Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki

Abstract:

Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.

Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis

Procedia PDF Downloads 334
535 Optimising Apparel Digital Production in Industrial Clusters

Authors: Minji Seo

Abstract:

Fashion stakeholders are becoming increasingly aware of technological innovation in manufacturing. In 2020, the COVID-19 pandemic caused transformations in working patterns, such as working remotely rather thancommuting. To enable smooth remote working, 3D fashion design software is being adoptedas the latest trend in design and production. The majority of fashion designers, however, are still resistantto this change. Previous studies on 3D fashion design software solely highlighted the beneficial and detrimental factors of adopting design innovations. They lacked research on the relationship between resistance factors and the adoption of innovation. These studies also fell short of exploringthe perspectives of users of these innovations. This paper aims to investigate the key drivers and barriers of employing 3D fashion design software as wellas to explore the challenges faced by designers.It also toucheson the governmental support for digital manufacturing in Seoul, South Korea, and London, the United Kingdom. By conceptualising local support, this study aims to provide a new path for industrial clusters to optimise digital apparel manufacturing. The study uses a mixture of quantitative and qualitative approaches. Initially, it reflects a survey of 350 samples, fashion designers, on innovation resistance factors of 3D fashion design software and the effectiveness of local support. In-depth interviews with 30 participants provide a better understanding of designers’ aspects of the benefits and obstacles of employing 3D fashion design software. The key findings of this research are the main barriers to employing 3D fashion design software in fashion production. The cultural characteristics and interviews resultsare used to interpret the survey results. The findings of quantitative data examine the main resistance factors to adopting design innovations. The dominant obstacles are: the cost of software and its complexity; lack of customers’ interest in innovation; lack of qualified personnel, and lack of knowledge. The main difference between Seoul and London is the attitudes towards government support. Compared to the UK’s fashion designers, South Korean designers emphasise that government support is highly relevant to employing 3D fashion design software. The top-down and bottom-up policy implementation approach distinguishes the perception of government support. Compared to top-down policy approaches in South Korea, British fashion designers based on employing bottom-up approaches are reluctant to receive government support. The findings of this research will contribute to generating solutions for local government and the optimisation of use of 3D fashion design software in fashion industrial clusters.

Keywords: digital apparel production, industrial clusters, innovation resistance, 3D fashion design software, manufacturing, innovation, technology, digital manufacturing, innovative fashion design process

Procedia PDF Downloads 102
534 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 110
533 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 226