Search results for: surface whiteness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6646

Search results for: surface whiteness

1096 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties

Authors: Akbar Esmaeili, Mahnoosh Aliahmadi

Abstract:

This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.

Keywords: nanocapsules, technolgy, biology, nano

Procedia PDF Downloads 41
1095 The Effect of Air Injection in Irrigation Water on Sugar Beet Yield

Authors: Yusuf Ersoy Yildirim, Ismail Tas, Ceren Gorgusen, Tugba Yeter, Aysegul Boyacioglu, K. Mehmet Tugrul, Murat Tugrul, Ayten Namli, H. Sabri Ozturk, M. Onur Akca

Abstract:

In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained.

Keywords: sugar beet, subsurface drip irrigation, air application, irrigation efficiency

Procedia PDF Downloads 82
1094 Antagonist Coactivation in Athletes Following Anterior Cruciate Ligament Reconstruction

Authors: Milad Pirali, Sohrab Keyhani, Mohhamad Ali Sanjari, Ali Ashraf Jamshidi

Abstract:

Purpose: The effect of hamstring antagonist activity on the knee extensors torque of the Anterior Cruciate Ligament reconstruction (ACLR) is not clear and persistent muscle weakness is common after ACLR. Hamstring activation when acting as antagonist is considered very important for knee strengths. Therefore the purpose of this study was to examine hamstring antagonist coactivation during maximal effort of the isokinetic knee extension in ACLR athletes with hamstring autograft. Materials and Methods: We enrolled 20 professional athletes who underwent primary ACLR (hamstring tendon autograft)with 6-24 months postoperative and 20 healthy subjects as control group. Each subjects performed maximal effort isokinetic knee extension and flexion in 60/˚ s and 180/˚ s velocities for the involved and uninvolved limb. Synchronously, surface electromyography (EMG) was recorded of vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF). The antagonist integrated EMG (IEMG) values were normalized to the IEMG of the same muscle during maximal isokinetic eccentric effort at the same velocities and ROM. Results: A one-way analysis of variance designs shows significantly greater IEMG coactivation of hamstring and decreased activation of Vm in ACLR when compared to uninvolved and control group leg in 60/˚ s and 180/˚ s velocities. Likewise peak torque to body weight was decreased in ACLR compared to uninvolved and control group during knee extension in both velocities (p < 0.05). Conclusions: Decreased extensors moment caused by decreased quadriceps inhibition and increased hamstring coactivation. In addition, these result indicated to decrease of motor unit recruitment in the VM (as a kinesiologicmonitore of the knee). It is appearing that strengthening of the quadriceps to be an important for rehabilitation program after ACLR for preparation in athletes endeavors. Therefore, we suggest that having more emphasis and focus on quadriceps strength and less emphasis on hamstring following ACLR.

Keywords: ACLR-coactivation, dynamometry, electromyography, isokinetic

Procedia PDF Downloads 255
1093 Microfluidic Chambers with Fluid Walls for Cell Biology

Authors: Cristian Soitu, Alexander Feuerborn, Cyril Deroy, Alfonso Castrejon-Pita, Peter R. Cook, Edmond J. Walsh

Abstract:

Microfluidics now stands as an academically mature technology after a quarter of a century research activities have delivered a vast array of proof of concepts for many biological workflows. However, translation to industry remains poor, with only a handful of notable exceptions – e.g. digital PCR, DNA sequencing – mainly because of biocompatibility issues, limited range of readouts supported or complex operation required. This technology exploits the domination of interfacial forces over gravitational ones at the microscale, replacing solid walls with fluid ones as building blocks for cell micro-environments. By employing only materials used by biologists for decades, the system is shown to be biocompatible, and easy to manufacture and operate. The method consists in displacing a continuous fluid layer into a pattern of isolated chambers overlaid with an immiscible liquid to prevent evaporation. The resulting fluid arrangements can be arrays of micro-chambers with rectangular footprint, which use the maximum surface area available, or structures with irregular patterns. Pliant, self-healing fluid walls confine volumes as small as 1 nl. Such fluidic structures can be reconfigured during the assays, giving the platform an unprecedented level of flexibility. Common workflows in cell biology are demonstrated – e.g. cell growth and retrieval, cloning, cryopreservation, fixation and immunolabeling, CRISPR-Cas9 gene editing, and proof-of-concept drug tests. This fluid-shaping technology is shown to have potential for high-throughput cell- and organism-based assays. The ability to make and reconfigure on-demand microfluidic circuits on standard Petri dishes should find many applications in biology, and yield more relevant phenotypic and genotypic responses when compared to standard microfluidic assays.

Keywords: fluid walls, micro-chambers, reconfigurable, freestyle

Procedia PDF Downloads 193
1092 A Review on Investigating the Relations between Water Harvesting and Water Conflicts

Authors: B. Laurita

Abstract:

The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.

Keywords: arid areas, governance, water conflicts, water harvesting

Procedia PDF Downloads 203
1091 Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification

Authors: Young Nam Chun, Soo Hyuk Yun, Byeo Ri Jeong

Abstract:

The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044).

Keywords: microwave heating, pyrolysis gasification, precombustion CCS, sewage sludge, biomass energy

Procedia PDF Downloads 323
1090 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases

Authors: Malay K. Das, Bhupen Kalita

Abstract:

The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.

Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch

Procedia PDF Downloads 232
1089 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 300
1088 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 68
1087 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment

Authors: K. Sushma Varma, Rajesh Singh

Abstract:

Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.

Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria

Procedia PDF Downloads 102
1086 CICAP: Promising Wound Healing Gel from Bee Products and Medicinal Plants

Authors: Laïd Boukraâ

Abstract:

Complementary and Alternative Medicine is an inclusive term that describes treatments, therapies, and modalities that are not accepted as components of mainstream education or practice, but that are performed on patients by some practitioners. While these treatments and therapies often form part of post-graduate education, study and writing, they are generally viewed as alternatives or complementary to more universally accepted treatments. Ancient civilizations used bee products and medicinal plants, but modern civilization and ‘education’ have seriously lessened our natural instinctive ability and capability. Despite the fact that the modern Western establishment appears to like to relegate apitherapy and aromatherapy to the status of 'folklore' or 'old wives' tales', they contain a vast spread of pharmacologically-active ingredients and each one has its own unique combination and properties. They are classified in modern herbal medicine according to their spheres of action. Bee products and medicinal plants are well-known natural product for their healing properties and their increasing popularity recently as they are widely used in wound healing. Honey not only has antibacterial properties which can help as an antibacterial agent but also has chemical properties which may further help in the wound healing process. A formulation with honey as its main component was produced into a honey gel. This new formulation has enhanced texture and is more user friendly for usage as well. This new formulation would be better than other formulas as it is hundred percent consisting of natural products and has been made into a better formulation. In vitro assay, animal model study and clinical trials have shown the effectiveness of LEADERMAX for the treatment of diabetic foot, burns, leg ulcer and bed sores. This one hundred percent natural product could be the best alternative to conventional products for wound and burn management. The advantages of the formulation are: 100% natural, affordable, easy to use, strong power of absorption, dry surface on the wound making a film, will not stick to the wound bed; helps relieve wound pain, inflammation, edema and bruising while improving comfort.

Keywords: bed sore bee products, burns, diabetic foot, medicinal plants, leg ulcer, wounds

Procedia PDF Downloads 337
1085 Mucoadhesive Chitosan-Coated Nanostructured Lipid Carriers for Oral Delivery of Amphotericin B

Authors: S. L. J. Tan, N. Billa, C. J. Roberts

Abstract:

Oral delivery of amphotericin B (AmpB) potentially eliminates constraints and side effects associated with intravenous administration, but remains challenging due to the physicochemical properties of the drug such that it results in meagre bioavailability (0.3%). In an advanced formulation, 1) nanostructured lipid carriers (NLC) were formulated as they can accommodate higher levels of cargoes and restrict drug expulsion and 2) a mucoadhesion feature was incorporated so as to impart sluggish transit of the NLC along the gastrointestinal tract and hence, maximize uptake and improve bioavailability of AmpB. The AmpB-loaded NLC formulation was successfully formulated via high shear homogenisation and ultrasonication. A chitosan coating was adsorbed onto the formed NLC. Physical properties of the formulations; particle size, zeta potential, encapsulation efficiency (%EE), aggregation states and mucoadhesion as well as the effect of the variable pH on the integrity of the formulations were examined. The particle size of the freshly prepared AmpB-loaded NLC was 163.1 ± 0.7 nm, with a negative surface charge and remained essentially stable over 120 days. Adsorption of chitosan caused a significant increase in particle size to 348.0 ± 12 nm with the zeta potential change towards positivity. Interestingly, the chitosan-coated AmpB-loaded NLC (ChiAmpB NLC) showed significant decrease in particle size upon storage, suggesting 'anti-Ostwald' ripening effect. AmpB-loaded NLC formulation showed %EE of 94.3 ± 0.02 % and incorporation of chitosan increased the %EE significantly, to 99.3 ± 0.15 %. This suggests that the addition of chitosan renders stability to the NLC formulation, interacting with the anionic segment of the NLC and preventing the drug leakage. AmpB in both NLC and ChiAmpB NLC showed polyaggregation which is the non-toxic conformation. The mucoadhesiveness of the ChiAmpB NLC formulation was observed in both acidic pH (pH 5.8) and near-neutral pH (pH 6.8) conditions as opposed to AmpB-loaded NLC formulation. Hence, the incorporation of chitosan into the NLC formulation did not only impart mucoadhesive property but also protected against the expulsion of AmpB which makes it well-primed as a potential oral delivery system for AmpB.

Keywords: Amphotericin B, mucoadhesion, nanostructured lipid carriers, oral delivery

Procedia PDF Downloads 162
1084 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 218
1083 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 57
1082 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques

Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair

Abstract:

Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.

Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting

Procedia PDF Downloads 359
1081 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 191
1080 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle

Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah

Abstract:

This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.

Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control

Procedia PDF Downloads 210
1079 Spatial Dynamic of Pico- and Nano-Phytoplankton Communities in the Mouth of the Seine River

Authors: M. Schapira, S. Françoise, F. Maheux, O. Pierre-Duplessix, E. Rabiller, B. Simon, R. Le Gendre

Abstract:

Pico- and nano-phytoplankton are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. While the role of physical forcing related to tidal cycle, water mass intrusion, nutrient availability, mixing and stratification on microphytoplankton blooms have been widely investigated, these are often overlooked for pico- and nano-phytoplankton especially in estuarine waters. This study investigates changes in abundances and community composition of pico- and nano-phytoplankton under different estuarine tidal conditions in the mouth of the Seine River in relation to nutrient availability, water column stratification and spatially localized currents. Samples were collected each day at high tide, over spring tide to neap tide cycle, from 21 stations homogeneously distributed in the Seine river month in May 2011. Vertical profiles of temperature, salinity and fluorescence were realized at each sampling station. Sub-surface water samples (i.e. 1 m depth) were collected for nutrients (i.e. N, P and Si), phytoplankton biomass (i.e. Chl a) and pico- and nano-phytoplankton enumeration and identification. Pico- and nano-phytoplankton populations were identified and quantified using flow cytometry. Total abundances tend to decrease from spring tide to neap tide. Samples were characterized by high abundances of Synechococcus and Cryptophyceae. The composition of the pico- and nano-phytoplankton varied greatly under the different estuarine tidal conditions. Moreover, at the scale of the river mouth, the pico- and nano-phytoplankton population exhibited patchy distribution patterns that were closely controlled by water mass intrusion from the Sea, freshwater inputs from the Seine River and the geomorphology of the river mouth. This study highlights the importance of physical forcing to the community composition of pico- and nano-phytoplankton that may be critical for the structure of the pelagic food webs in estuarine and adjacent coastal seas.

Keywords: nanophytoplancton, picophytoplankton, physical forcing, river mouth, tidal cycle

Procedia PDF Downloads 357
1078 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation

Authors: Anshar Ajatasatru

Abstract:

The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.

Keywords: contract rate, cut-fill method, dozer push, overburden volume

Procedia PDF Downloads 318
1077 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation

Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes

Procedia PDF Downloads 590
1076 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer

Authors: Suveen Kumar

Abstract:

Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.

Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip

Procedia PDF Downloads 129
1075 Computational Elucidation of β-endo-Acetylglucosaminidase (LytB) Inhibition by Kaempferol, Apigenin, and Quercetin in Streptococcus pneumoniae: Anti-Pneumonia Mechanism

Authors: Singh Divya, Rohan Singh, Anjana Pandey

Abstract:

Reviewers' Comments: The study provides valuable insights into the anti-pneumonia properties of flavonoids against LytB. Authors could further validate findings through in vitro studies and consider exploring combination therapies for enhanced efficacy Response: Thankyou for your valuable comments. This study has been conducted further via experimental validation of the in-silico findings. The study uses Streptococcus pneumoniae D39 strain and examine the anti-pneumonia effect of kaempferol, quercetin and apigenin at various concentrations ranging from 9ug/ml to 200ug/ml. From results, it can be concluded that the kaempferol has shown the highest cytotoxic effect (72.1% of inhibition) against S. pneumoniae at concentration of 40ug/ml compare to apigenin and quercetin. The treatment of S. pneumoniae with concoction of kaempferol, quercetin and apigenin has also been performed, it is noted that conc. of 200ug/ml was most effect in achieving 75% inhibition. As S. pneumoniae D39 is a virulent encapsulated strain, the capsule interferes with the uptake of large size drug formulation. For instance, S. pneumoniae D39 with kaempferol and gold nano urchin (GNU) formulation, but the large size of GNU has resulted in reduced cytotoxic effect of kaempferol (27%). To achieve near 100% cytotoxic effect on the MDR S. pneumoniae D39 strain, the study will target the development of kaempferol-engineered gold nano-urchin’ conjugates, where gold nanocrystal will be of small size (less than or equal to 5nm) and decorated with hydroxyl, sulfhydryl, carboxyl, amine and groups. This approach is expected to enhance the anti-pneumonia effect of kaempferol (polyhydroxylated flavonoid). The study will also examine the interactive study among lung epithelial cell line (A549), kaempferol-engineered gold nano urchins, and S. pneumoniae for exploring the colonization, invasion, and biofilm formation of S. pneumoniae on A549 cells resembling the upper respiratory surface of humans.

Keywords: streptococcus pneumoniae, β-endo-Acetylglucosaminidase, apigenin, quercetin kaempferol, molecular dynamic simulation, interactome study and GROMACS

Procedia PDF Downloads 8
1074 The Onset of Ironing during Casing Expansion

Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers

Abstract:

Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.

Keywords: casing expansion, cement, formation, metal forming, plasticity, well design

Procedia PDF Downloads 182
1073 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor

Authors: Santimoy Khilari, Debabrata Pradhan

Abstract:

Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.

Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole

Procedia PDF Downloads 340
1072 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.

Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle

Procedia PDF Downloads 76
1071 Prevalence of Trichomonas Tenax in Patients with Pulmonary Disease and Watersheds and Its Potential Implications for Pulmonary Virus Infection

Authors: Pei Chi Fang, Wei Chen Lin

Abstract:

Trichomonas tenax is a microaerophilic oral protozoan found in patients with poor oral hygiene. It participates in the inflammatory process of periodontal disease and can potentially be aspirated into the lungs, giving rise to pulmonary trichomoniasis. However, the precise roles of T. tenax in the pulmonary system remain largely unexplored and warrant comprehensive epidemiological investigation. To assess the prevalence of T. tenax infection, we collected bronchoalveolar lavage fluid (BALF) samples from hospitalized patients with lung diseases. A specific nested PCR approach was employed to determine prevalence rates, yielding 21 positive cases out of 61 samples from Ditmanson Medical Foundation Chia-Yi Christian Hospital, and 11 positive cases out of 55 samples from National Cheng Kung University Hospital. Furthermore, there is a critical need for comprehensive data regarding the presence of T. tenax in environmental surface watersheds. In this context, we present findings from investigations in the Yanshuei and Donggang river basins in southern Taiwan, which are crucial sources for public drinking water in the region. In order to elucidate potential implications on pulmonary virus infections, we conducted an analysis of gene expression level changes in H292 cell line after exposure to T. tenax. Our findings revealed significant regulation of multiple virus-related genes, including IFI44L and IFITM3. Ongoing research endeavors are focused on identifying the key components within T. tenax responsible for these observed effects. Crucially, this study lays the groundwork for a preliminary understanding of T. tenax prevalence in patients with pulmonary diseases. It also seeks to establish a meaningful correlation between lung infections and oral hygiene practices, with the ultimate aim of informing distinct treatment and prevention strategies.

Keywords: parasitology, genes, virus, human health, infection, lung

Procedia PDF Downloads 75
1070 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 87
1069 Seasonal Variability of the Price and Quality of Fresh Red Porgy Fish Sold in the Local Market of Igoumenitsa, NW Greece

Authors: C. Nathanailides, P. Logothetis, G. Kanlis S. Anastasiou, L. Kokokiris, P. Mpeza

Abstract:

Farmed Red porgy (Pagrus pagrus) is one of the “new candidate fish species” for the diversification of Mediterranean aquaculture which is predomintly based on the cultivation of the European sea bass, (Dicenfrarchus labrax), and the gilthead sea bream, (Sparus aurata). The quality of farmed red porgy (Pagrus pagrus) was investigated with samples obtained from the local fish market in the region of Igoumenitsa, NW Greece. Sample of the fish (ungutted and with scales) were purchased from three local fish mongers and transported to the laboratory within few minutes in foamed polystyrene boxes in ice. The average weight of whole fish ranged between 271-289g. A sample of the fish flesh taken from the upper epaxial region was transferred aseptically to a stomacher bag containing sterile Buffered Peptone Water solution (0.1%) and homogenized. After serial dilutions in 0.1% peptone water, the homogenates were spread on the surface of agar plates. Total viable counts (TVC) were determined using plate count agar after incubation at 30 oC for 3 days. The quality attributes monitored during the present work included bacterial load (total mesophilic) and the pH of the flesh. There was a marginal increase in the price of fresh red porgy sold during the summer time, with prices ranging, over a period of four seasons, from 5.85 to 7.5 per kilo. The results of the microbiological analysis indicate that with the exception of summer samples (which exhibited 5.23 (±0.13) log cfu/g), the bacterial load remained well below the legal limits and was around 3.1 log cfu/g. The pH values varied between 6.54 and 6.69. The results indicate a possible influence of season on the bacterial load of fish sold in the market. Nevertheless, the parameters investigated in the present work indicate that the bacteria load was well below the legal limit and that fish were sold within few days after harvesting. The peak of bacterial load in the summer samples may be a result of a post-harvesting contamination of the farmed fish and temperature fluctuations during handling and transportation.

Keywords: fish quality, marketing, aquaculture, Pagrus pagrus

Procedia PDF Downloads 683
1068 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+

Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa

Abstract:

Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.

Keywords: adsorption, acidity, ion exchange, zeolite

Procedia PDF Downloads 198
1067 Recurrence of Pterygium after Surgery and the Effect of Surgical Technique on the Recurrence of Pterygium in Patients with Pterygium

Authors: Luksanaporn Krungkraipetch

Abstract:

A pterygium is an eye surface lesion that begins in the limbal conjunctiva and progresses to the cornea. The lesion is more common in the nasal limbus than in the temporal, and it has a distinctive wing-like aspect. Indications for surgery, in decreasing order of significance, are grown over the corneal center, decreased vision due to corneal deformation, documented growth, sensations of discomfort, and aesthetic concerns. Recurrent pterygium results in the loss of time, the expense of therapy, and the potential for vision impairment. The objective of this study is to find out how often the recurrence of pterygium after surgery occurs, what effect the surgery technique has, and what causes them to come back in people with pterygium. Materials and Methods: Observational case control in retrospect: the study involves a retrospective analysis of 164 patient samples. Data analysis is descriptive statistics analysis, i.e., basic data details about pterygium surgery and the risk of recurrent pterygium. For factor analysis, the inferential statistics odds ratio (OR) and 95% confidence interval (CI) ANOVA are utilized. A p-value of 0.05 was deemed statistically important. Results: The majority of patients, according to the results, were female (60.4%). Twenty-four of the 164 (14.6%) patients who underwent surgery exhibited recurrent pterygium. The average age is 55.33 years old. Postoperative recurrence was reported in 19 cases (79.3%) of bare sclera techniques and five cases (20.8%) of conjunctival autograft techniques. The recurrence interval is 10.25 months, with the most common (54.17 percent) being 12 months. In 91.67 percent of cases, all follow-ups are successful. The most common recurrence level is 1 (25%). A surgical complication is a subconjunctival hemorrhage (33.33 percent). Comparing the surgeries done on people with recurrent pterygium didn't show anything important (F = 1.13, p = 0.339). Age significantly affected the recurrence of pterygium (95% CI, 6.79-63.56; OR = 20.78, P 0.001). Conclusion: This study discovered a 14.6% rate of pterygium recurrence after pterygium surgery. Across all surgeries and patients, the rate of recurrence was four times higher with the bare sclera method than with conjunctival autograft. The researchers advise selecting a more conventional surgical technique to avoid a recurrence.

Keywords: pterygium, recurrence pterygium, pterygium surgery, excision pterygium

Procedia PDF Downloads 90