Search results for: A. C. Long
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6119

Search results for: A. C. Long

599 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 253
598 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 128
597 Basics of Gamma Ray Burst and Its Afterglow

Authors: Swapnil Kumar Singh

Abstract:

Gamma-ray bursts (GRB's), short and intense pulses of low-energy γ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. GRB'sare accompanied by long-lasting afterglows, and they are associated with core-collapse supernovae. The detection of delayed emission in X-ray, optical, and radio wavelength, or "afterglow," following a γ-ray burst can be described as the emission of a relativistic shell decelerating upon collision with the interstellar medium. While it is fair to say that there is strong diversity amongst the afterglow population, probably reflecting diversity in the energy, luminosity, shock efficiency, baryon loading, progenitor properties, circumstellar medium, and more, the afterglows of GRBs do appear more similar than the bursts themselves, and it is possible to identify common features within afterglows that lead to some canonical expectations. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave, and radio). It is a slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. In X-ray wavelengths, the GRB afterglow fades quickly at first, then transitions to a less-steep drop-off (it does other stuff after that, but we'll ignore that for now). During these early phases, the X-ray afterglow has a spectrum that looks like a power law: flux F∝ E^β, where E is energy and beta is some number called the spectral index. This kind of spectrum is characteristic of synchrotron emission, which is produced when charged particles spiral around magnetic field lines at close to the speed of light. In addition to the outgoing forward shock that ploughs into the interstellar medium, there is also a so-called reverse shock, which propagates backward through the ejecta. In many ways," reverse" shock can be misleading; this shock is still moving outward from the restframe of the star at relativistic velocity but is ploughing backward through the ejecta in their frame and is slowing the expansion. This reverse shock can be dynamically important, as it can carry comparable energy to the forward shock. The early phases of the GRB afterglow still provide a good description even if the GRB is highly collimated since the individual emitting regions of the outflow are not in causal contact at large angles and so behave as though they are expanding isotropically. The majority of afterglows, at times typically observed, fall in the slow cooling regime, and the cooling break lies between the optical and the X-ray. Numerous observations support this broad picture for afterglows in the spectral energy distribution of the afterglow of the very bright GRB. The bluer light (optical and X-ray) appears to follow a typical synchrotron forward shock expectation (note that the apparent features in the X-ray and optical spectrum are due to the presence of dust within the host galaxy). We need more research in GRB and Particle Physics in order to unfold the mysteries of afterglow.

Keywords: GRB, synchrotron, X-ray, isotropic energy

Procedia PDF Downloads 92
596 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 136
595 Women’s Perceptions of DMPA-SC Self-Injection in Malawi

Authors: Mandayachepa C. Nyando, Lauren Suchman, Innocencia Mtalimanja, Address Malata, Tamanda Jumbe, Martha Kamanga, Peter Waiswa

Abstract:

Background: Subcutaneous depot medroxyprogesterone acetate (DMPA-SC) is a new innovation in contraceptive methods that allow users to inject themselves with a hormonal contraceptive in their own homes. Self-injection (SI) of DMPA-SC has the potential to improve the accessibility of family planning to women who want it and who are capable of injecting themselves. Malawi started implementing this new innovation in 2018. SI was incorporated into the DMPA-SC delivery strategy from its outset. Methodology: This study involved two districts in Malawi where DMPA-SC SI was rolled out: Mulanje and Ntchisi. We used a qualitative cross-sectional study design where 60 in-depth interviews were conducted with women of reproductive age group stratified as 15-45 age band. These included women who were SI users, non-users, and any woman who was on any contraceptive methods. The women participants were tape-recorded, and data were transcribed and then analysed using Dedoose software, where themes were categorised into mother and child themes. Results: Women perceived DMPA SC SI as uniquely private, convenient, and less painful when self-injected. In terms of privacy, women in Mulanje and Ntchisi especially appreciated that self-injecting allowed them to use covertly from partners. Some men do not allow their spouses to use modern contraceptive methods; hence women prefer to use them covertly. “… but I first reach out to men because the strongest power is answered by men (MJ015).” In addition, women reported that SI offers privacy from family/community and less contact with healthcare providers. These aspects of privacy were especially valued in areas where there is a high degree of mistrust around family planning and among those who feel judged or antagonized purchasing contraception, such as young unmarried women. Women also valued the convenience SI provided in terms of their ability to save time by injecting themselves at home rather than visiting a healthcare provider and having more reliable access to contraception, particularly in the face of stockouts. SI allows for stocking up on doses to accommodate shifting work schedules in case of future stockouts or hard times, such as the period of COVID-19, where there was a limitation in the movement of the people. Conclusion: Our findings suggest that SI may meet the needs of many women in Malawi as long as the barriers are eliminated. The barriers women mentioned include fear of self-inject and proper storage of the DMPA SC SI, and these barriers can be eliminated by proper training. The findings also set the scene for policy revision and direction at a national level and integrate the approach with national family planning strategies in Malawi. Findings provide insights that may guide future implementation strategies, strengthen non-clinic family planning access programs and stimulate continued research.

Keywords: family planning, Malawi, Sayana press, self-injection

Procedia PDF Downloads 72
594 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 352
593 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency

Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade

Abstract:

Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".

Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency

Procedia PDF Downloads 307
592 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 311
591 Using Google Distance Matrix Application Programming Interface to Reveal and Handle Urban Road Congestion Hot Spots: A Case Study from Budapest

Authors: Peter Baji

Abstract:

In recent years, a growing body of literature emphasizes the increasingly negative impacts of urban road congestion in the everyday life of citizens. Although there are different responses from the public sector to decrease traffic congestion in urban regions, the most effective public intervention is using congestion charges. Because travel is an economic asset, its consumption can be controlled by extra taxes or prices effectively, but this demand-side intervention is often unpopular. Measuring traffic flows with the help of different methods has a long history in transport sciences, but until recently, there was not enough sufficient data for evaluating road traffic flow patterns on the scale of an entire road system of a larger urban area. European cities (e.g., London, Stockholm, Milan), in which congestion charges have already been introduced, designated a particular zone in their downtown for paying, but it protects only the users and inhabitants of the CBD (Central Business District) area. Through the use of Google Maps data as a resource for revealing urban road traffic flow patterns, this paper aims to provide a solution for a fairer and smarter congestion pricing method in cities. The case study area of the research contains three bordering districts of Budapest which are linked by one main road. The first district (5th) is the original downtown that is affected by the congestion charge plans of the city. The second district (13th) lies in the transition zone, and it has recently been transformed into a new CBD containing the biggest office zone in Budapest. The third district (4th) is a mainly residential type of area on the outskirts of the city. The raw data of the research was collected with the help of Google’s Distance Matrix API (Application Programming Interface) which provides future estimated traffic data via travel times between freely fixed coordinate pairs. From the difference of free flow and congested travel time data, the daily congestion patterns and hot spots are detectable in all measured roads within the area. The results suggest that the distribution of congestion peak times and hot spots are uneven in the examined area; however, there are frequently congested areas which lie outside the downtown and their inhabitants also need some protection. The conclusion of this case study is that cities can develop a real-time and place-based congestion charge system that forces car users to avoid frequently congested roads by changing their routes or travel modes. This would be a fairer solution for decreasing the negative environmental effects of the urban road transportation instead of protecting a very limited downtown area.

Keywords: Budapest, congestion charge, distance matrix API, application programming interface, pilot study

Procedia PDF Downloads 204
590 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 172
589 Using Balanced Scorecard Performance Metrics in Gauging the Delivery of Stakeholder Value in Higher Education: the Assimilation of Industry Certifications within a Business Program Curriculum

Authors: Thomas J. Bell III

Abstract:

This paper explores the value of assimilating certification training within a traditional course curriculum. This innovative approach is believed to increase stakeholder value within the Computer Information System program at Texas Wesleyan University. Stakeholder value is obtained from increased job marketability and critical thinking skills that create employment-ready graduates. This paper views value as first developing the capability to earn an industry-recognized certification, which provides the student with more job placement compatibility while allowing the use of critical thinking skills in a liberal arts business program. Graduates with industry-based credentials are often given preference in the hiring process, particularly in the information technology sector. And without a pioneering curriculum that better prepares students for an ever-changing employment market, its educational value is dubiously questioned. Since certifications are trending in the hiring process, academic programs should explore the viability of incorporating certification training into teaching pedagogy and courses curriculum. This study will examine the use of the balanced scorecard across four performance dimensions (financial, customer, internal process, and innovation) to measure the stakeholder value of certification training within a traditional course curriculum. The balanced scorecard as a strategic management tool may provide insight for leveraging resource prioritization and decisions needed to achieve various curriculum objectives and long-term value while meeting multiple stakeholders' needs, such as students, universities, faculty, and administrators. The research methodology will consist of quantitative analysis that includes (1) surveying over one-hundred students in the CIS program to learn what factor(s) contributed to their certification exam success or failure, (2) interviewing representatives from the Texas Workforce Commission to identify the employment needs and trends in the North Texas (Dallas/Fort Worth) area, (3) reviewing notable Workforce Innovation and Opportunity Act publications on training trends across several local business sectors, and (4) analyzing control variables to identify specific correlations between industry alignment and job placement to determine if a correlation exists. These findings may provide helpful insight into impactful pedagogical teaching techniques and curriculum that positively contribute to certification credentialing success. And should these industry-certified students land industry-related jobs that correlate with their certification credential value, arguably, stakeholder value has been realized.

Keywords: certification exam teaching pedagogy, exam preparation, testing techniques, exam study tips, passing certification exams, embedding industry certification and curriculum alignment, balanced scorecard performance evaluation

Procedia PDF Downloads 112
588 Comparison of Gestational Diabetes Influence on the Ultrastructure of Rectus Abdominis Muscle in Women and Rats

Authors: Giovana Vesentini, Fernanda Piculo, Gabriela Marini, Debora Damasceno, Angelica Barbosa, Selma Martheus, Marilza Rudge

Abstract:

Problem statement: Skeletal muscle is highly adaptable, muscle fiber composition and size can respond to a variety of stimuli, such physiologic, as pregnancy, and metabolic abnormalities, as Diabetes mellitus. This study aimed to analyze the effects of pregnancy-associated diabetes on the rectus abdominis muscle (RA), and to compare this changes in rats and women. Methods: Female Wistar rats were maintained under controlled conditions and distributed in Pregnant (P) and Long-term mild pregnant diabetic (LTMd) (n=3 r/group). Diabetes in rats was induced by streptozotocin (100mg/Kg, sc) on the first day of life, for a hyperglycemic state between 120-300 mg/dL in adult life. Female rats were mated overnight, at day 21 of pregnancy were anesthetized, and killed for the harvesting of maternal RA. Pregnant women who attended the Diabetes Prenatal Care Clinic of Botucatu Medical School were distributed in Pregnant non-diabetic (Pnd) and Gestational Diabetic (GDM) (n=3 w/group). The diagnosis of GDM was established according to ADA’s criteria (2016). The harvesting of RA was during the cesarean section. Transversal cross-sections of the RA of both women and rats were analyzed by transmission electron microscopy. All procedures were approved by the Ethics Committee on Animal Experiments of the Botucatu Medical School (Protocol Number 1003/2013) and by the Botucatu Medical School Ethical Committee for Human Research in Medical Sciences (CAAE: 41570815.0.0000.5411). Results: The photomicrographs of the RA of rats revealed disorganized Z lines, thinning sarcomeres, and a usual quantity of intermyofibrillar mitochondria in the P group. The LTMd group showed swollen sarcoplasmic reticulum, dilated T tubes and areas with sarcomere disruption. The ultrastructural analysis of Pnd non-diabetic women in the RA showed well-organized myofibrils forming intact sarcomeres, organized Z lines and a normal distribution of intermyofibrillar mitochondria. The GDM group revealed increase in intermyofibrillar mitochondria, areas with sarcomere disruption and increased lipid droplets. Conclusion: Pregnancy and diabetes induce adaptations in the ultrastructure of the rectus abdominis muscle for both women and rats, changing the architectural design of these tissues. However, in rats these changes are more severe maybe because, besides the high blood glucose levels, the quadrupedal animal may suffer an excessive mechanical tension during pregnancy by gravity. Probably, these findings may suggest that these alterations are a risk factor that contributes to the development of muscle dysfunction in women with GDM and may motivate treatment strategies in these patients.

Keywords: gestational diabetes, muscle dysfunction, pregnancy, rectus abdominis

Procedia PDF Downloads 295
587 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions

Authors: Pirta Palola, Richard Bailey, Lisa Wedding

Abstract:

Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.

Keywords: economics of biodiversity, environmental valuation, natural capital, value function

Procedia PDF Downloads 198
586 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 126
585 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 88
584 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 205
583 Marketing in the Fashion Industry and Its Critical Success Factors: The Case of Fashion Dealers in Ghana

Authors: Kumalbeo Paul Kamani

Abstract:

Marketing plays a very important role in the success of any firm since it represents the means through which a firm can reach its customers and also promotes its products and services. In fact, marketing aids the firm in identifying customers who the business can competitively serve, and tailoring product offerings, prices, distribution, promotional efforts, and services towards those customers. Unfortunately, in many firms, marketing has been reduced to merely advertisement. For effective marketing, firms must go beyond this often-limited function of advertisement. In the fashion industry in particular, marketing faces challenges due to its peculiar characteristics. Previous research for instance affirms the idiosyncrasy and peculiarities that differentiate the fashion industry from other industrial areas. It has been documented that the fashion industry is characterized seasonal intensity, short product life cycles, the difficulty of competitive differentiation, and long time for companies to reach financial stability. These factors are noted to pose obstacles to the fashion entrepreneur’s endeavours and can be the reasons that explain their low survival rates. In recent times, the fashion industry has been described as a market that is accessible market, has low entry barriers, both in terms of needed capital and skills which have all accounted for the burgeoning nature of startups. Yet as already stated, marketing is particularly challenging in the industry. In particular, areas such as marketing, branding, growth, project planning, financial and relationship management might represent challenges for the fashion entrepreneur but that have not been properly addressed by previous research. It is therefore important to assess marketing strategies of fashion firms and the factors influencing their success. This study generally sought to examine marketing strategies of fashion dealers in Ghana and their critical success factors. The study employed the quantitative survey research approach. A total of 120 fashion dealers were sampled. Questionnaires were used as instrument of data collection. Data collected was analysed using quantitative techniques including descriptive statistics and Relative Importance Index. The study revealed that the marketing strategies used by fashion apparels are text messages using mobile phones, referrals, social media marketing, and direct marketing. Results again show that the factors influencing fashion marketing effectiveness are strategic management, marketing mix (product, price, promotion etc), branding and business development. Policy implications are finally outlined. The study recommends among others that there is a need for the top management executive to craft and adopt marketing strategies that enable that are compatible with the fashion trends and the needs of the customers. This will improve customer satisfaction and hence boost market penetration. The study further recommends that the fashion industry in Ghana should seek to ensure that fashion apparels accommodate the diversity and the cultural setting of different customers to meet their unique needs.

Keywords: marketing, fashion, industry, success factors

Procedia PDF Downloads 48
582 Rural Nurses as a Consistent Resource

Authors: Meirav Eshkol, Miri Blaufeld, Rinat Basal

Abstract:

Aim: The working environment in rural clinics is often isolated and distant from major health centers. In these circumstances, rural health care faces numerous challenges. The hope is that, in the immediate future and in the medium and long range, the rural nursing staff will realize their full professional and personal potential to their own satisfaction and to the health and welfare of their patients. Background: Rural nurses work mostly alone or with very few colleagues, and have the authority to make professional decisions, a fact which often requires them to make critical decisions in pressure situations. In addition, the expectations set for these nurses are extremely high, a fact which requires them to be extremely skilled and to fulfill their professional potential. They are required to provide high-quality and comprehensive care to the individual, the family, and the community and to maintain close interaction with the community. Work in a rural setting requires the flexibility to perform multiple tasks in an isolated setting, often far removed from major health centers. In order to maintain professional satisfaction for the rural nurse, expanded direction and training are required in professional know-how, and in the development of new and existing skills, toward the goal of treating a diverse population and to obtain a comprehensive view of the components of a diagnosis for treatment and to develop an understanding appropriate to the presented reality. Objective: To provide knowledge and to expand and develop professional skills in the prevention and advancement of health in the care of a diverse patient population. The development of strategies and skills for work under pressure alone instills expertise in performing multiple tasks in diverse disciplines. To reduce feelings of stress and burnout. Methodology: This course is the first and one of a kind in Clalit - the biggest health organisation in Israel. Observing and identifying the needs of the nurses in the field relating to the development of professional and personal skills defining goals and objectives, and determining the content of a course designed for rural nurses and kibbutz nurses who are not Clalit employees. Results: 43 nurses participated and 30 answered the feedback questionnaire. The rating of their experience was 4.33 (on a scale of 1-5, with 5 being the highest ranking). 92% indicated the importance of meeting with additional nurses to teach their colleagues. 83% of the nurses indicated an increased sense of organizational belonging. 60% indicated that the course helped to reduce feelings of stress and burnout in becoming a better rural nurse. 80% indicated that the course helped them establish intra-organizational professional cooperation and initiating processes. Conclusion: The course is an instrument which aids in increasing the feeling of organizational belonging, reducing feelings of stress and burnout, creation of relationships and cooperation both within and outside of the organization, increased the realization of the potential of the village nurse.

Keywords: rural nurse, alone, burnout, multiple tasks

Procedia PDF Downloads 72
581 Training for Search and Rescue Teams: Online Training for SAR Teams to Locate Lost Persons with Dementia Using Drones

Authors: Dalia Hanna, Alexander Ferworn

Abstract:

This research provides detailed proposed training modules for the public safety teams and, specifically, SAR teams responsible for search and rescue operations related to finding lost persons with dementia. Finding a lost person alive is the goal of this training. Time matters if a lost person is to be found alive. Finding lost people living with dementia is quite challenging, as they are unaware they are lost and will not seek help. Even a small contribution to SAR operations could contribute to saving a life. SAR operations will always require expert professional and human volunteers. However, we can reduce their time, save lives, and reduce costs by providing practical training that is based on real-life scenarios. The content for the proposed training is based on the research work done by the researcher in this area. This research has demonstrated that, based on utilizing drones, the algorithmic approach could support a successful search outcome. Understanding the behavior of the lost person, learning where they may be found, predicting their survivability, and automating the search are all contributions of this work, founded in theory and demonstrated in practice. In crisis management, human behavior constitutes a vital aspect in responding to the crisis; the speed and efficiency of the response often get affected by the difficulty of the context of the operation. Therefore, training in this area plays a significant role in preparing the crisis manager to manage the emotional aspects that lead to decision-making in these critical situations. Since it is crucial to gain high-level strategic choices and the ability to apply crisis management procedures, simulation exercises become central in training crisis managers to gain the needed skills to respond critically to these events. The training will enhance the responders’ ability to make decisions and anticipate possible consequences of their actions through flexible and revolutionary reasoning in responding to the crisis efficiently and quickly. As adult learners, search and rescue teams will be approaching training and learning by taking responsibility of the learning process, appreciate flexible learning and as contributors to the teaching and learning happening during that training. These are all characteristics of adult learning theories. The learner self-reflects, gathers information, collaborates with others and is self-directed. One of the learning strategies associated with adult learning is effective elaboration. It helps learners to remember information in the long term and use it in situations where it might be appropriate. It is also a strategy that can be taught easily and used with learners of different ages. Designers must design reflective activities to improve the student’s intrapersonal awareness.

Keywords: training, OER, dementia, drones, search and rescue, adult learning, UDL, instructional design

Procedia PDF Downloads 114
580 A Protocol of Procedures and Interventions to Accelerate Post-Earthquake Reconstruction

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

The Italian experiences, positive and negative, of the post-earthquake are conditioned by long times and structural bureaucratic constraints, also motivated by the attempt to contain mafia infiltration and corruption. The transition from the operational phase of the emergency to the planning phase of the reconstruction project is thus hampered by a series of inefficiencies and delays, incompatible with the need for rapid recovery of the territories in crisis. In fact, intervening in areas affected by seismic events means at the same time associating the reconstruction plan with an urban and territorial rehabilitation project based on strategies and tools in which prevention and safety play a leading role in the regeneration of territories in crisis and the return of the population. On the contrary, the earthquakes that took place in Italy have instead further deprived the territories affected of the minimum requirements for habitability, in terms of accessibility and services, accentuating the depopulation process, already underway before the earthquake. The objective of this work is to address with implementing and programmatic tools the procedures and strategies to be put in place, today and in the future, in Italy and abroad, to face the challenge of the reconstruction of activities, sociality, services, risk mitigation: a protocol of operational intentions and firm points, open to a continuous updating and implementation. The methodology followed is that of the comparison in a synthetic form between the different Italian experiences of the post-earthquake, based on facts and not on intentions, to highlight elements of excellence or, on the contrary, damage. The main results obtained can be summarized in technical comparison cards on good and bad practices. With this comparison, we intend to make a concrete contribution to the reconstruction process, certainly not only related to the reconstruction of buildings but privileging the primary social and economic needs. In this context, the recent instrument applied in Italy of the strategic urban and territorial SUM (Minimal Urban Structure) and the strategic monitoring process become dynamic tools for supporting reconstruction. The conclusions establish, by points, a protocol of interventions, the priorities for integrated socio-economic strategies, multisectoral and multicultural, and highlight the innovative aspects of 'inversion' of priorities in the reconstruction process, favoring the take-off of 'accelerator' interventions social and economic and a more updated system of coexistence with risks. In this perspective, reconstruction as a necessary response to the calamitous event can and must become a unique opportunity to raise the level of protection from risks and rehabilitation and development of the most fragile places in Italy and abroad.

Keywords: an operational protocol for reconstruction, operational priorities for coexistence with seismic risk, social and economic interventions accelerators of building reconstruction, the difficult post-earthquake reconstruction in Italy

Procedia PDF Downloads 129
579 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 256
578 OER on Academic English, Educational Research and ICT Literacy, Promoting International Graduate Programs in Thailand

Authors: Maturos Chongchaikit, Sitthikorn Sumalee, Nopphawan Chimroylarp, Nongluck Manowaluilou, Thapanee Thammetha

Abstract:

The 2015 Kasetsart University Research Plan, which was funded by the National Research Institutes: TRF – NRCT, comprises four sub-research projects on the development of three OER websites and on their usage study by students in international programs. The goals were to develop the open educational resources (OER) in the form of websites that will promote three key skills of quality learning and achievement: Academic English, Educational Research, and ICT Literacy, to graduate students in international programs of Thailand. The statistics from the Office of Higher Education showed that the number of foreign students who come to study in international higher education of Thailand has increased respectively by 25 percent per year, proving that the international education system and institutes of Thailand have been already recognized regionally and globally as meeting the standards. The output of the plan: the OER websites and their materials, and the outcome: students’ learning improvement due to lecturers’ readiness for open educational media, will ultimately lead the country to higher business capabilities for international education services in ASEAN Community in the future. The OER innovation is aimed at sharing quality knowledge to the world, with the adoption of Creative Commons Licenses that makes sharing be able to do freely (5Rs openness), without charge and leading to self and life-long learning. The research has brought the problems on the low usage of existing OER in the English language to develop the OER on three specific skills and try them out with the sample of 100 students randomly selected from the international graduate programs of top 10 Thai universities, according to QS Asia University Rankings 2014. The R&D process was used for product evaluation in 2 stages: the development stage and the usage study stage. The research tools were the questionnaires for content and OER experts, the questionnaires for the sample group and the open-ended interviews for the focus group discussions. The data were analyzed using frequency, percentage, mean and SD. The findings revealed that the developed websites were fully qualified as OERs by the experts. The students’ opinions and satisfaction were at the highest levels for both the content and the technology used for presentation. The usage manual and self-assessment guide were finalized during the focus group discussions. The direct participation according to the concept of 5Rs Openness Activities through the provided tools of OER models like MERLOT and OER COMMONS, as well as the development of usage manual and self-assessment guide, were revealed as a key approach to further extend the output widely and sustainably to the network of users in various higher education institutions.

Keywords: open educational resources, international education services business, academic English, educational research, ICT literacy, international graduate program, OER

Procedia PDF Downloads 225
577 Chemical vs Visual Perception in Food Choice Ability of Octopus vulgaris (Cuvier, 1797)

Authors: Al Sayed Al Soudy, Valeria Maselli, Gianluca Polese, Anna Di Cosmo

Abstract:

Cephalopods are considered as a model organism with a rich behavioral repertoire. Sophisticated behaviors were widely studied and described in different species such as Octopus vulgaris, who has evolved the largest and more complex nervous system among invertebrates. In O. vulgaris, cognitive abilities in problem-solving tasks and learning abilities are associated with long-term memory and spatial memory, mediated by highly developed sensory organs. They are equipped with sophisticated eyes, able to discriminate colors even with a single photoreceptor type, vestibular system, ‘lateral line analogue’, primitive ‘hearing’ system and olfactory organs. They can recognize chemical cues either through direct contact with odors sources using suckers or by distance through the olfactory organs. Cephalopods are able to detect widespread waterborne molecules by the olfactory organs. However, many volatile odorant molecules are insoluble or have a very low solubility in water, and must be perceived by direct contact. O. vulgaris, equipped with many chemosensory neurons located in their suckers, exhibits a peculiar behavior that can be provocatively described as 'smell by touch'. The aim of this study is to establish the priority given to chemical vs. visual perception in food choice. Materials and methods: Three different types of food (anchovies, clams, and mussels) were used, and all sessions were recorded with a digital camera. During the acclimatization period, Octopuses were exposed to the three types of food to test their natural food preferences. Later, to verify if food preference is maintained, food was provided in transparent screw-jars with pierced lids to allow both visual and chemical recognition of the food inside. Subsequently, we tested alternatively octopuses with food in sealed transparent screw-jars and food in blind screw-jars with pierced lids. As a control, we used blind sealed jars with the same lid color to verify a random choice among food types. Results and discussion: During the acclimatization period, O. vulgaris shows a higher preference for anchovies (60%) followed by clams (30%), then mussels (10%). After acclimatization, using the transparent and pierced screw jars octopus’s food choices resulted in 50-50 between anchovies and clams, avoiding mussels. Later, guided by just visual sense, with transparent but not pierced jars, their food preferences resulted in 100% anchovies. With pierced but not transparent jars their food preference resulted in 100% anchovies as first food choice, the clams as a second food choice result (33.3%). With no possibility to select food, neither by vision nor by chemoreception, the results were 20% anchovies, 20% clams, and 60% mussels. We conclude that O. vulgaris uses both chemical and visual senses in an integrative way in food choice, but if we exclude one of them, it appears clear that its food preference relies on chemical sense more than on visual perception.

Keywords: food choice, Octopus vulgaris, olfaction, sensory organs, visual sense

Procedia PDF Downloads 224
576 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 66
575 Interwoven Realms: The Relationship Between Textiles, Fashion, and Architecture

Authors: Toktam mehrabani

Abstract:

Textiles, fashion, and architecture, though seemingly disparate fields, share a deep and evolving relationship. This paper explores the intersection of these disciplines, examining how the tactile, structural, and aesthetic qualities of textiles have influenced both fashion and architecture over time. By investigating historical and contemporary examples, this paper seeks to unravel the ways in which textiles and fashion have not only shaped architectural design but have also acted as a bridge between functionality, art, and human experience in the built environment.Textiles have been integral to human culture since the dawn of civilization. Their presence transcends mere functionality, serving as a medium for artistic expression, cultural identity, and social commentary. Fashion, derived from textiles, has long been associated with personal identity and societal trends, while architecture reflects human needs, environmental context, and cultural values. This paper posits that the relationship between textiles, fashion, and architecture is more interconnected than often perceived, with each influencing and inspiring the other across time. Textiles in Architectural Design: From ancient draperies in temples to tapestries in castles, textiles have adorned structures, softening rigid spaces and adding layers of warmth and luxury. Fabric screens and curtains have also served functional purposes, such as controlling light, acoustics, and temperature. Fashion as Architectural Expression: Renaissance and Baroque fashion used exaggerated forms, corsetry, and layers to mirror the grandiosity of architectural styles of the time. Clothing acted as wearable architecture, with structured garments mirroring the strong lines and curves of buildings..Structural Textiles in Architecture: In the 21st century, textiles are no longer just decorative; they have become integral to architectural innovation. Materials like tensile fabrics and smart textiles are used in creating flexible, lightweight structures. Iconic examples include Frei Otto’s work with tensile membranes, seen in the Munich Olympic Stadium.Technological advancements have drastically transformed the relationship between textiles, fashion, and architecture. Digital tools like 3D printing and laser cutting allow designers in both fields to push the limits of form and structure. Smart textiles that react to environmental stimuli are being explored for use in both wearable technology and adaptable architecture, such as facades that change in response to weather conditions. Textiles, fashion, and architecture are inextricably linked through their shared exploration of form, structure, and expression. This interdisciplinary relationship continues to evolve, driven by technological advancements and a growing emphasis on sustainability. As fashion becomes more architectural in its construction and architecture more fluid in its forms, the lines between these disciplines blur, offering new possibilities for creativity and functionality in both wearable and built environments.

Keywords: textiles in architecture, fashion and architecture, textile architecture, structural textiles, wearable architecture, architectural fashion

Procedia PDF Downloads 36
574 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country

Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni

Abstract:

Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.

Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country

Procedia PDF Downloads 74
573 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 429
572 Teachers of the Pandemic: Retention, Resilience, and Training

Authors: Theoni Soublis

Abstract:

The COVID-19 pandemic created a severe interruption in teaching and learning in K-12 schools. It is essential that educational researchers, teachers, and administrators understand the long term effects that COVID-19 had on a variety of stakeholders in education. This investigation aims to analyze the research since the beginning of the pandemic that focuses specifically on teacher retention, resilience, and training. The results of this investigation will help to inform future research in order to better understand how the institution of education can continue to be prepared and to better prepare for future significant shifts in the modalities of instruction. The results of this analysis will directly impact the field of education as it will broaden the scope of understanding regarding how COVID- 19 impacted teaching and learning. The themes that will emerge from the data analysis will directly inform policy makers, administrators, and researchers about how to best implement training and curriculum design in order to support teacher effectiveness this in the classroom. Educational researchers have written about how teacher morale plummeted and how many teachers reported early burnout and higher stress levels. Teachers’ stress and anxiety soared during the COVID-19 pandemic, but so has their resilience and dedication to the field of education. This research aims to understand how public-school teachers overcame teaching obstacles presented to them during COVID-19. Research has been conducted to identify a variety of information regarding the impact the pandemic has had on K-12 teachers, students, and families. This research aims to understand how teachers continued to pursue their teaching objectives without significant training of effective online instruction methods. Not many educators even heard of the video conferencing platform Zoom before the spring of 2020. Researchers are interested in understanding how teachers used their expertise, prior knowledge, and training to institute immediate and effective online learning environments, what types of relationships did teachers build with students while teaching 100% remotely, and how did relationships change with students while teaching remotely? Furthermore, did the teacher-student relationship propel teacher resolve to be successful while teaching during a pandemic. Recent world events have significantly impacted the field of public-school teaching. The pandemic forced teachers to shift their paradigm about how to maintain high academic expectations, meet state curriculum standards, and assess students learning gains to make data-informed decisions while simultaneously adapting modes of instruction through multiple outlets with little to no training on remote, synchronous, asynchronous, virtual, and hybrid teaching. While it would be very interesting to study how teaching positively impacted students learning during the pandemic, I am more interested in understanding how teaches stayed the course and maintained their mental health while dealing with the stress and pressure of teaching during COVID-19.

Keywords: teacher retention, COVID-19, teacher education, teacher moral

Procedia PDF Downloads 89
571 Feasibility and Acceptability of Modified Mindfulness-Based Stress Reduction for Health Care Workers in Acute Stress during the COVID-19 Pandemic

Authors: Susan Evans, Janna Gordon-Elliott, Katarzyna Wyka, Virginia Mutch

Abstract:

During the rise of the COVID-19 pandemic, healthcare workers needed an intervention that could address their profound acute stress. Mindfulness-based stress reduction (MBSR) is a program that has long established effectiveness for mental and physical health outcomes. In recent years, MBSR has been modified such that the duration of both class time and number of sessions has been abbreviated, and its delivery has been adapted for online dissemination, thus increasing the likelihood that individuals who could most benefit from the program would do so. We sought to investigate whether a brief, online version of MBSR could be feasible and acceptable for health care workers (HCW) in acute stress in response to the COVID-19 pandemic. Participants were recruited via an email sent to all hospital employees, which spans residents, physicians, nurses, housekeeping, lab technicians, administrators, and others. Participating HCW were asked about their previous experience with mindfulness and asked to commit to a minimum of 3 sessions. They were then provided with four weekly 1-hour sessions online that included the major mindfulness exercises taught during traditional MBSR programs (i.e., body scan, sitting meditation, mindful eating, and yoga). Participants were provided with supporting slides, videos, demonstrations and asked to track their practice. Hospital staff enrolled in the program; by the end of the first day of recruitment, 40 had applied; by the start date, about 100 were enrolled, and n attended a minimum of 3 sessions, supporting feasibility. Hospital staff also participated and practiced the mindfulness exercises (n=42), thus supporting acceptability. Participants reported that the program was logical, successful, and worth recommending both before starting the program and after completing it (M= 22.02 and M=21.76, respectively, possible range 0-27). There was a slight decline in the belief in improvement in health and well-being due to the program (ES=.37, p=.021). Secondary hypotheses regarding participants’ self-reported stress and levels of mindfulness were also supported, such that participants reported improvements in perceived stress (ES=.45, p=.006), compassion satisfaction, burnout, and secondary traumatic stress (ES=.41, ES=.31, ES=.35, respectively, p<.05). Participants reported significant improvements in the describing facet of mindfulness (ES=.49, p=.004), while all other facets (observing, acting with awareness, nonjudging of inner experience, nonreactivity to inner experience) remained unchanged pre- to post-program. Results from this study suggest that an abridged, online version of MBSR is feasible and accessible to health care workers in acute stress and provides benefits expected from traditional MBSR programs. The lack of a randomized control group limits generalizability. We intend to provide a structure, framework, and lessons learned to hospital administrators and clinical staff seeking to support their employees in acute stress.

Keywords: acute stress, health care workers, mindfulness, online interventions

Procedia PDF Downloads 134
570 Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas

Authors: Sachin B. Patil, Narendra M. Kanhe

Abstract:

A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr.

Keywords: spent wash, anaerobic digestion, biomass, biogas

Procedia PDF Downloads 268