Search results for: optimized network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6194

Search results for: optimized network

734 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles

Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi

Abstract:

This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.

Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles

Procedia PDF Downloads 285
733 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems

Authors: Isabelle Snyder

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model

Procedia PDF Downloads 97
732 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 186
731 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 290
730 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 47
729 Between the Pen and the Dish Towel: Paradox of Globalization

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

In Brazil, women are the majority of the country's population. They have advanced in terms of years of education and professional training. However, this has not prevented the differences in the labor market from being sustained, particularly the wage gap and inequalities concerning the access to command positions and promotions, i.e., in the gender relations and treatment. One of the conditions which constitute a barrier to career advancement is the necessary support chain to support women when they are in the labor market. Therefore, the purpose of this research is to demonstrate, describe, and criticize some of the current conformations of support chains and how these compete to promote the phenomenon known as glass ceiling in the country. However, this support may come even from inside a woman's own home, with a fairer division of household activities between men and women. Such behavior can free an entire network of women within the same family. In addition, it can serve as pressure to structure better conditions for women as a whole, improving the living conditions of the poor population. This can occur through programs and projects for qualification and retraining of adult women. In answer to the question that guides this study, it is concluded that a family support system is critical to the success of women in management positions. To meet this demand, one of the ways could be the development of specific gender policies by the public authorities, in accordance with the emerging global economic policies, in order to provide and structure the necessary support. This would respond to feminist manifestations - which should go on pointing needs – although the legislative assembly should also propose ideas to change this picture. This is a qualitative research, with a poststructuralist approach, featuring a cutout corpus of three interviews carried out with women holding leadership positions in the academia. Questions related to this very discussion are many. New studies could address points as the promotion of qualification and expansion of skills of women in subaltern condition. There is also need to investigate possible support systems, considering the inequalities and local economic conditions.

Keywords: gender and labor market, glass ceiling, post-structuralism, support chain

Procedia PDF Downloads 237
728 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province

Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye

Abstract:

In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable model

Keywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution

Procedia PDF Downloads 91
727 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 233
726 Comprehensive Strategy for Healthy City from Local Practice Networking among Citizens, Industry, University and Municipality

Authors: Yuki Hara

Abstract:

Healthy assets are recognized as important for all people in the world through experiencing COVID-19. Each part of life and work is important to be changed against the preceding wide-spreading of COVID-19. Furthermore, it is necessary to innovate the whole structure of a city upon the sum of the parts. This study aims at creating a comprehensive strategy from a small practice of making healthier lives with collaborating local actors for a city. This paper employs action research as the research framework. The core practice is the 'Ken’iku Festival' at Ken’iku Festival Committee. The field locates the urban-rural fringe in the northwest part of Fujisawa city, Kanagawa prefecture, Japan. The data is collected through the author's practices for three years from the observations and interviews at meetings and discussions among stakeholders, texts in municipal reports, books, and movies, 3 questionnaires for customers and stakeholders at the Ken’iku Festival. These data are analysed by qualitative methods. The results show that couples in their 40s with children and couples or friends over the 70s are at the heart of promoting healthy lifestyles. In contrast, 40% of the visitors at the festival are the people who have no idea or no interest in healthier actions, which the committee has to suggest healthy activities through more pleasing services. The committee could organize staff and local actors as the core parties involved through gradually expanding its tasks relating to the local practices. This private sectoral activity from health promotion is covering a part of the whole-city planning of Fujisawa municipality by including many people over organisations into one community. This paper concludes from local practice networking through the festival that a comprehensive strategy for a healthy city is both a practical approach easily applied to each partner and one of the holistic services.

Keywords: communal practice network, healthy cities, health & development, health promotion, with and after COVID-19

Procedia PDF Downloads 136
725 Unraveling the Political Complexities of the Textile and Clothing Waste Ecosystem; A Case Study on Melbourne Metropolitan Civic Waste Management Practices

Authors: Yasaman Samie

Abstract:

The ever-increasing rate of textile and clothing (T&C) waste generation and the common ineffective waste management practices have been for long a challenge for civic waste management. This challenge stems from not only the complexity in the T&C material components but also the heterogeneous nature of the T&C waste management sector and the disconnection between the stakeholders. To date, there is little research that investigates the importance of a governmental structure and its role in T&C waste managerial practices and decision makings. This paper reflects on the impacts and involvement of governments, the Acts, and legislation on the effectiveness of T&C waste management practices, which are carried out by multiple players in a city context. In doing so, this study first develops a methodical framework for holistically analyzing a city’s T&C waste ecosystem. Central to this framework are six dimensions: social, environmental, economic, political, cultural, and educational, as well as the connection between these dimensions such as Socio-Political and Cultural-Political. Second, it delves into the political dimension and its interconnections with varying aspects of T&C waste. In this manner, this case-study takes metropolitan Melbourne as a case and draws on social theories of Actor-Network Theory and the principals of supply chain design and planning. Data collection was through two rounds of semi-structured interviews with 18 key players of T&C waste ecosystem (including charities, city councils, private sector providers and producers) mainly within metropolitan Melbourne and also other Australian and European cities. Research findings expand on the role of the politics of waste in facilitating a proactive approach to T&C waste management in the cities. That is achieved through a revised definition for T&C waste and its characteristics, discussing the varying perceptions of value in waste, prioritizing waste types in civic waste management practices and how all these aspects shall be reflected in the in-placed acts and legislations.

Keywords: civic waste management, multi-stakeholder ecosystem, textile and clothing waste, waste and governments

Procedia PDF Downloads 117
724 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL

Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson

Abstract:

The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.

Keywords: PCR, optimisation, microfluidics, COMSOL

Procedia PDF Downloads 165
723 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 153
722 Role of Small and Medium Size Enterprises (SMEs) in Corporate Social Responsibility (CSR)

Authors: Amber Zahid, Fatima Naseer, Maham Atta, Fareeha Zafar

Abstract:

Corporate social authority (CSR) talk, scholarly scrutinize, open arrangement and media editorials, which have thrived in the previous not many decades according to the craving to characterize the nexus between business and social order had a tendency to center primarily on expansive corporate associations which are required to act mindfully. The enormous organizations have for a long time pulled in huge volume of expositive expression on CSR. Almost no expositive expression is presently accessible to upgrade our comprehension about the engagement of little and medium-measured endeavors (SMEs) in CSR. The SMEs, regularly characterized differently regarding turnover terrible stake quality, proprietorship structure and the amount of workers, is a noteworthy part worldwide as far as monetary ecological and the social effect they make. This paper endeavoured to extend this obvious research bay, characterized the way of SMEs the total commitments of the area to economies of both advanced and advancing countries and their part engagement in CSR. The study embraced qualitative literary works review strategy. An audit of the negligible expositive expression furnished knowledge and characterized the course of examination in this significant and underexplored region of study. SMEs were discovered to perform parts connected with group improvement, representative activities, consumerism, natural movements, and production network necessities. To defeat the imperatives going up against SMEs engagement in CSR activities the paper prescribed expanded assets, preparing programs advancement of SMEs arranged instruments and guidelines to guide appropriation and execution and government mediation systems to make the fundamental motivating forces and underpin administrations for adequate engagement.

Keywords: corporate social responsibility, small and medium-sized enterprises, responsible practices, corporate citizenship

Procedia PDF Downloads 441
721 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 496
720 The Influence of Travel Experience within Perceived Public Transport Quality

Authors: Armando Cartenì, Ilaria Henke

Abstract:

The perceived public transport quality is an important driver that influences both customer satisfaction and mobility choices. The competition among transport operators needs to improve the quality of the services and identify which attributes are perceived as relevant by passengers. Among the “traditional” public transport quality attributes there are, for example: travel and waiting time, regularity of the services, and ticket price. By contrast, there are some “non-conventional” attributes that could significantly influence customer satisfaction jointly with the “traditional” ones. Among these, the beauty/aesthetics of the transport terminals (e.g. rail station and bus terminal) is probably one of the most impacting on user perception. Starting from these considerations, the point stressed in this paper was if (and how munch) the travel experience of the overall travel (e.g. how long is the travel, how many transport modes must be used) influences the perception of the public transport quality. The aim of this paper was to investigate the weight of the terminal quality (e.g. aesthetic, comfort and service offered) within the overall travel experience. The case study was the extra-urban Italian bus network. The passengers of the major Italian terminal bus were interviewed and the analysis of the results shows that about the 75% of the travelers, are available to pay up to 30% more for the ticket price for having a high quality terminal. A travel experience effect was observed: the average perceived transport quality varies with the characteristic of the overall trip. The passengers that have a “long trip” (travel time greater than 2 hours) perceived as “low” the overall quality of the trip even if they pass through a high quality terminal. The opposite occurs for the “short trip” passengers. This means that if a traveler passes through a high quality station, the overall perception of that terminal could be significantly reduced if he is tired from a long trip. This result is important and if confirmed through other case studies, will allow to conclude that the “travel experience impact" must be considered as an explicit design variable for public transport services and planning.

Keywords: transportation planning, sustainable mobility, decision support system, discrete choice model, design problem

Procedia PDF Downloads 304
719 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants

Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer

Abstract:

Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.

Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 134
718 Cultural Regeneration and Social Impacts of Industrial Heritage Transformation: The Case of Westergasfabriek Cultural Park, Netherland

Authors: Hsin Hua He

Abstract:

The purpose of this study is to strengthen the social cohesion of the local community by injecting the cultural and creative concept into the industrial heritage transformation. The paradigms of industrial heritage research tend to explore from the perspective of space analysis, which concerned less about the cultural regeneration and the development of local culture. The paradigms of cultural quarter research use to from the perspective of creative economy and urban planning, concerned less about the social impacts and the interaction between residents and industrial sites. This research combines these two research areas of industrial heritage and cultural quarter, and focus on the social and cultural aspects. The transformation from the industrial heritage into a cultural park not only enhances the cultural capital and the quality of residents’ lives, but also preserves the unique local values. Internally it shapes the local identity, while externally establishes the image of the city. This paper uses Westergasfabriek Cultural Park in Amsterdam as the case study, through literature analysis, field work, and depth interview to explore how the cultural regeneration transforms industrial heritage. In terms of the planners’ and residents’ point of view adopt the theory of community participation, social capital, and sense of place to analyze the social impact of the industrial heritage transformation. The research finding is through cultural regeneration policies like holding cultural activities, building up public space, social network and public-private partnership, and adopting adaptive reuse to fulfil the people’s need and desire and reach the social cohesion. Finally, the study will examine the transformation of Taiwan's industrial heritage into cultural and creative quarters. The results are expected to use the operating experience of the Amsterdam cases and provide directions for Taiwan’s industrial heritage management to meet the cultural, social, economic symbiosis.

Keywords: cultural regeneration, community participation, social capital, sense of place, industrial heritage transformation

Procedia PDF Downloads 507
717 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance

Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu

Abstract:

Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.

Keywords: artificial intelligence, facial recognition, natural language processing, internet of things

Procedia PDF Downloads 358
716 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 83
715 A Study of the Attitude Towards Marriage among Young Adults in Indian and Tibetan Society Which Impacted in Social Learning and Cross-Cultural Behavior

Authors: Meenakshi Chaubey

Abstract:

A principle proposed in the cross-cultural adaption of behavior among Indian and Tibetan societies in which there are not any great variations between their young adults on the mindset of day-to-day marriage, Marriage plays a dominant position in constructing the society, which in large part comprises underneath the domain of lifestyle. Way of life is a social behavior and norm located in human societies where an extensive range of phenomena can be transmitted thru social studying. It acts characteristic of the individual has been the diploma day-to-day which they have got cultivated a specific stage of class in arts, science, architecture. The existing studies preliminarily on young adults of each community, wherein we carried out a comparative observe of the mindset of daily marriage among Indian and Tibetan teens. Further, we studied statistics comprehensively on the mindset closer day by day the marriage between Indian adult males and Tibetan younger males. With the extension of a complete look, we considered the mindset of an everyday marriage of Indian girls and Tibetan young ladies. Studies 1 showed that there might be no sizable distinction within the attitude of the day-to-day marriage of Indian and Tibetan teenagers. It, in addition, showed that they followed each different marriage beliefs and customs. Studies 2 showed that there might be no important difference in the attitude toward the everyday marriage of Indian and Tibetan young males. It similarly showcased that day-to-day secular schooling gadget in Tibetan society complements their clinical approach and changes their point of view on distinct social issues along with marriage. Research three confirmed that there is no substantial difference in the mindset of the daily marriage of Indian and Tibetan younger females. It similarly spread out the strict authorities' recommendations that they may no longer be allowed day-to-day comply with their marriage practices, including polygamy and polyandry. Thus, the information showed that there's a shift of lifestyle from one network every day to some other community because of social every day, which affects the conduct and results of daily past cultural adaptation.

Keywords: culture, marriage, attitude, society, young adults, Indian, Tibetan

Procedia PDF Downloads 90
714 Authentic and Transformational Leadership Model of the Directors of Tambon Health Promoting Hospitals Effecting to the Effectiveness of Southern Tambon Health Promoting Hospitals: The Interaction and Invariance Tests of Gender Factor

Authors: Suphap Sikkhaphan, Muwanga Zake, Johnnie Wycliffe Frank

Abstract:

The purposes of the study included a) investigating the authentic and transformational leadership model of the directors of tambon health promoting hospitals b) evaluating the relation between the authentic and transformation leadership of the directors of tambon health promoting hospitals and the effectiveness of their hospitals and c) assessing the invariance test of the authentic and transformation leadership of the directors of tambon health promoting hospitals. All 400 southern tambon health promoting hospital directors were enrolled into the study. Half were males (200), and another half were females (200). They were sampled via a stratified method. A research tool was a questionnaire paper containing 4 different sections. The Alpha-Cronbach’s Coefficient was equally to .98. Descriptive analysis was used for demographic data, and inferential statistics was used for the relation and invariance tests of authentic and transformational leadership of the directors of tambon health promoting hospitals. The findings revealed overall the authentic and transformation leadership model of the directors of tambon health promoting hospitals has the relation to the effectiveness of the hospitals. Only the factor of “strong community support” was statistically significantly related to the authentic leadership (p < .05). However, there were four latent variables statistically related to the transformational leadership including, competency and work climate, management system, network cooperation, and strong community support (p = .01). Regarding the relation between the authentic and transformation leadership of the directors of tambon health promoting hospitals and the effectiveness of their hospitals, four casual variables of authentic leadership were not related to those latent variables. In contrast, all four latent variables of transformational leadership has statistically significantly related to the effectiveness of tambon health promoting hospitals (p = .001). Furthermore, only management system variable was significantly related to those casual variables of the authentic leadership (p < .05). Regarding the invariance test, the result found no statistical significance of the authentic and transformational leadership model of the directors of tambon health promoting hospitals, especially between male and female genders (p > .05).

Keywords: authentic leadership, transformational leadership, tambon health promoting hospital

Procedia PDF Downloads 443
713 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 112
712 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 72
711 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering

Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han

Abstract:

Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.

Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate

Procedia PDF Downloads 155
710 The Singapore Innovation Web and Facilitation of Knowledge Processes

Authors: Ola Jon Mork, Irina Emily Hansen

Abstract:

The European Growth Strategy Program calls for more efficient methods for knowledge creation and innovation. This study contributes with new insights into the Singapore Innovation System; more precisely how knowledge processes are facilitated. The research material is collected by visiting the different innovation locations in Singapore and depth interview with key persons. The different innovation actors web sites and brochures have been studied. Governmental reports and figures have also been studied. The findings show that facilitation of Knowledge Processes in the Singapore Innovation System has a basic structure with three processes, which is 1) Idea capturing – 2)Technology and Business Execution – 3)Idea Realization. Dedicated innovation parks work with the most promising entrepreneurs; more precisely: finding the persons with the motivation to 'change the world'. The innovation park will facilitate these entrepreneurs for 100 days, where they also will be connected to a global network of venture capital. And, the entrepreneurs will have access to mentors from these venture companies. Research institutes parks work with the development of world leading technology. To facilitate knowledge development they connect with industrial companies which are the most promising applicators of their technology. Knowledge facilitation is the main purpose, but this cooperation/testing is also serving as a platform for funding. Probably this is cooperation is also attractive for world leading companies. Dedicated innovation parks work with facilitation of innovators of new applications and perfection of products for the end- user. These parks can be specialized in special areas, like health products and life science products. Another example of this is automotive companies giving research call for these parks to develop and innovate new products and services upon their technology. Common characteristics for the knowledge facilitation in the Singapore Innovation System are a short trial period for promising actors, normally 100 days. It is also a strong focus on training of the entrepreneurs. Presentations and diffusion of knowledge is an important part of the facilitation. Funding will be available for the most successful entrepreneurs and innovators.

Keywords: knowledge processes, facilitation, innovation, Singapore innovation web

Procedia PDF Downloads 298
709 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 521
708 Multimedia Container for Autonomous Car

Authors: Janusz Bobulski, Mariusz Kubanek

Abstract:

The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.

Keywords: an autonomous car, image processing, lidar, obstacle detection

Procedia PDF Downloads 229
707 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 107
706 Multi-Criterial Analysis: Potential Regions and Height of Wind Turbines, Rio de Janeiro, Brazil

Authors: Claudio L. M. Souza, Milton Erthal, Aldo Shimoya, Elias R. Goncalves, Igor C. Rangel, Allysson R. T. Tavares, Elias G. Figueira

Abstract:

The process of choosing a region for the implementation of wind farms involves factors such as the wind regime, economic viability, land value, topography, and accessibility. This work presents results obtained by multi-criteria decision analysis, and it establishes a hierarchy, regarding the installation of wind farms, among geopolicy regions in the state of ‘Rio de Janeiro’, Brazil: ‘Regiao Norte-RN’, ‘Regiao dos Lagos-RL’ and ‘Regiao Serrana-RS’. The wind regime map indicates only these three possible regions with an average annual wind speed of above of 6.0 m/s. The method applied was the Analytical Hierarchy Process-AHP, designed to prioritize and rank the three regions based on four criteria as follows: 1) potential of the site and average wind speeds of above 6.0 ms-¹, 2) average land value, 3) distribution and interconnection to electric network with the highest number of electricity stations, and 4) accessibility with proximity and quality of highways and flat topography. The values of energy generation were calculated for wind turbines 50, 75, and 100 meters high, considering the production of site (GWh/Km²) and annual production (GWh). The weight of each criterion was attributed by six engineers and by analysis of Road Map, the Map of the Electric System, the Map of Wind Regime and the Annual Land Value Report. The results indicated that in 'RS', the demand was estimated at 2,000 GWh, so a wind farm can operate efficiently in 50 m turbines. This region is mainly mountainous with difficult access and lower land value. With respect to ‘RL’, the wind turbines have to be installed at a height of 75 m high to reach a demand of 6,300 GWh. This region is very flat, with easy access, and low land value. Finally, the ‘NR’ was evaluated as very flat and with expensive lands. In this case, wind turbines with 100 m can reach an annual production of 19,000 GWh. In this Region, the coast area was classified as of greater logistic, productivity and economic potential.

Keywords: AHP, renewable energy, wind energy

Procedia PDF Downloads 154
705 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 143