Search results for: data driven decision making
25110 Self-Determination among Individuals with Intellectual Disability: An Experiment
Authors: Wasim Ahmad, Bir Singh Chavan, Nazli Ahmad
Abstract:
Objectives: The present investigation is an attempt to find out the efficacy of training the special educators on promoting self-determination among individuals with intellectual disability. Methods: The study equipped the special educators with necessary skills and knowledge to train individuals with the intellectual disability for practicing self-determination. Subjects: Special educators (N=25) were selected for training on self-determination among individuals with intellectual disability. After receiving the training, (N=50) individuals with an intellectual disability were selected and intervened by the trained special educators. Tool: Self-Determination Scale for Adults with Mild Mental Retardation (SDSAMR) developed by Keshwal and Thressiakutty (2010) has been used. It’s a reliable and valid tool used by many researchers. It has 36 items distributed in five domains namely: personal management, community participation, recreation and leisure time, choice making and problem solving. Analysis: The collected data was analyzed using the statistical techniques such as t-test, ANCOVA, and Posthoc Tuckey test. Results: The findings of the study reveal that there is a significant difference at 1% level in the pre and post tests mean scores (t-15.56) of self-determination concepts among the special educators. This indicates that the training enhanced the performance of special educators on the concept of self-determination among individuals with intellectual disability. The study also reveals that the training received on transition planning by the special educators found to be effective because they were able to practice the concept by imparting and training the individuals with intellectual disability to if determined. The results show that there was a significant difference at 1% level in the pre and post tests mean scores (t-16.61) of self-determination among individuals with intellectual disability. Conclusion: To conclude it can be said that the training has a remarkable impact on the performance of the individuals with intellectual disability on self-determination.Keywords: experiment, individuals with intellectual disability, self-determination, special educators
Procedia PDF Downloads 33825109 The Measurement of the Multi-Period Efficiency of the Turkish Health Care Sector
Authors: Erhan Berk
Abstract:
The purpose of this study is to examine the efficiency and productivity of the health care sector in Turkey based on four years of health care cross-sectional data. Efficiency measures are calculated by a nonparametric approach known as Data Envelopment Analysis (DEA). Productivity is measured by the Malmquist index. The research shows how DEA-based Malmquist productivity index can be operated to appraise the technology and productivity changes resulted in the Turkish hospitals which are located all across the country.Keywords: data envelopment analysis, efficiency, health care, Malmquist Index
Procedia PDF Downloads 33825108 Medical and Surgical Nursing Care
Authors: Nassim Salmi
Abstract:
This study aimed to identify the administrative, social, cultural, economic and psychological challenges facing the nursing s ector in the Tebessa Algeria. It also seeks to identify whether there are differences between the opinions of managers in public and private hospitals about these challenges. To achieve the objectives of the study, the descriptive analytical method was adopted. The study also used the questionnaire as a tool for collecting the necessary data and information, which was applied to a sample of directors of public and private hospitals in the Tebessa, which amounted to (114) individuals. The study reached a set of results, including: that there are no statistically significant differences between the opinions of managers in public and private hospitals about the administrative, social, cultural, economic and psychological challenges facing the nursing sector in the Tebessa . The results also showed agreement between the views of managers in private public hospitals that the most important administrative challenges are the lack of training programs that affect the efficiency and performance of nursing work, and that the most important social and cultural challenges are the hospital’s failure to provide suitable nurseries for Saudi female nurses, and that the most important economic challenges are the lack of Availability of medical equipment and devices, and the most important psychological challenge is the tense relationship between the administration and the hospital's nursing staff. The study recommended focusing on the importance of rehabilitation and training together, activating the role of training in the ministry and making it compulsory and a condition of renewal for practicing and continuing the nursing profession, and providing the social and economic needs of the nursing staff.Keywords: postoperative care, gynecology, nursing documentation, database
Procedia PDF Downloads 9525107 A Fuzzy-Logic Approach to Rule-Based Systems for Leadership Style Selection
Authors: Kim Michelle Siegling, Thomas Spengler, Sebastian Herzog
Abstract:
In personnel economics, the choice of a leadership style is about the question of how a supervisor should lead his or her employees in such a way that operational goals are achieved. In this paper, it is assumed that such leadership decisions are made according to the situation. Thus, the optimal or at least a permissible leadership style has to be selected from a set of several possible leadership styles. For this choice, a wide range of models has been developed in the scientific literature, from which the so-called normative decision model will be picked out and focused on. While the original model is based on univocal rules, this paper develops a fuzzy rule system.Keywords: leadership, leadership styles, rule based systems, fuzzy logic
Procedia PDF Downloads 5025106 Comparison Of Data Mining Models To Predict Future Bridge Conditions
Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed
Abstract:
Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models
Procedia PDF Downloads 19525105 Social Media Advertising and Acceptability of Fast Moving Consumer Goods in Nigeria’s Manufacturing Industry
Authors: John Akinwumi Makinde
Abstract:
Nigerian manufacturing industry, particularly the fast moving consumer producing firms play vital roles in Nigerian economy. This sector’s product acceptability is given very little attention along with social media advertising that communicate product information to audience across the globe need to be documented. Procter and Gamble Plc operate in Nigeria with appreciable number of fast moving consumer goods that service Nigerian economy. Social media advertising disposition of the company and product acceptability of the company deserve some elucidations. This study therefore examined the impact of social media advertising on product acceptability of FMCG in Nigerian manufacturing industry, using Procter and Gamble Plc as case study. The study employed the case study type of descriptive survey research design. The population consisted of 235 customers of G&P Plc, which were selected through random sampling method. A total of 235 copies of questionnaires titled 'Social Media Advertising and Product Acceptability (SMA-PA) Questionnaire' was administered and retrieved. Data generated were analysed using frequency distribution and regression analysis at 0.05 level. It was found that social media advertising positively and significantly motivated customers to buy product of P&G Plc (r =.147**, N= 235, p(.000) < .01). Findings also showed that social media advertising has significant impact on product acceptability of FCMG in P&G Plc (F(2,61)=22.250; R2=.629; P(.000) < .05). The study concluded that social media advertising is a determinant factor of consumer decision to accept fast moving consumer goods in Nigerian manufacturing industry. It is recommended that with the growing market of FMCG, there is need to educate the market with the product unique features, standard and quality on social media. Finally, Fast Moving Consumer Goods firms should deploy excellent marketing mix on social media.Keywords: advertising, fast moving consumer goods, manufacturing industry, product acceptability, social media
Procedia PDF Downloads 32425104 Piql Preservation Services - A Holistic Approach to Digital Long-Term Preservation
Authors: Alexander Rych
Abstract:
Piql Preservation Services (“Piql”) is a turnkey solution designed for secure, migration-free long- term preservation of digital data. Piql sets an open standard for long- term preservation for the future. It consists of equipment and processes needed for writing and retrieving digital data. Exponentially growing amounts of data demand for logistically effective and cost effective processes. Digital storage media (hard disks, magnetic tape) exhibit limited lifetime. Repetitive data migration to overcome rapid obsolescence of hardware and software bears accelerated risk of data loss, data corruption or even manipulation and adds significant repetitive costs for hardware and software investments. Piql stores any kind of data in its digital as well as analog form securely for 500 years. The medium that provides this is a film reel. Using photosensitive film polyester base, a very stable material that is known for its immutability over hundreds of years, secure and cost-effective long- term preservation can be provided. The film reel itself is stored in a packaging capable of protecting the optical storage medium. These components have undergone extensive testing to ensure longevity of up to 500 years. In addition to its durability, film is a true WORM (write once- read many) medium. It therefore is resistant to editing or manipulation. Being able to store any form of data onto the film makes Piql a superior solution for long-term preservation. Paper documents, images, video or audio sequences – all of those file formats and documents can be preserved in its native file structure. In order to restore the encoded digital data, only a film scanner, a digital camera or any appropriate optical reading device will be needed in the future. Every film reel includes an index section describing the data saved on the film. It also contains a content section carrying meta-data, enabling users in the future to rebuild software in order to read and decode the digital information.Keywords: digital data, long-term preservation, migration-free, photosensitive film
Procedia PDF Downloads 39525103 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs
Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili
Abstract:
OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.Keywords: LWD measurements, caliper log, correlations, analysis
Procedia PDF Downloads 12625102 Inversion of Gravity Data for Density Reconstruction
Authors: Arka Roy, Chandra Prakash Dubey
Abstract:
Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation
Procedia PDF Downloads 21625101 Music Listening in Dementia: Current Developments and the Potential for Automated Systems in the Home: Scoping Review and Discussion
Authors: Alexander Street, Nina Wollersberger, Paul Fernie, Leonardo Muller, Ming Hung HSU, Helen Odell-Miller, Jorg Fachner, Patrizia Di Campli San Vito, Stephen Brewster, Hari Shaji, Satvik Venkatesh, Paolo Itaborai, Nicolas Farina, Alexis Kirke, Sube Banerjee, Eduardo Reck Miranda
Abstract:
Escalating neuropsychiatric symptoms (NPS) in people with dementia may lead to earlier care home admission. Music listening has been reported to stimulate cognitive function, potentially reducing agitation in this population. We present a scoping review, reporting on current developments and discussing the potential for music listening with related technology in managing agitation in dementia care. Of two searches for music listening studies, one focused on older people or people living with dementia where music listening interventions, including technology, were delivered in participants’ homes or in institutions to address neuropsychiatric symptoms, quality of life and independence. The second included any population focusing on the use of music technology for health and wellbeing. In search one 70/251 full texts were included. The majority reported either statistical significance (6, 8.5%), significance (17, 24.2%) or improvements (26, 37.1%). Agitation was specifically reported in 36 (51.4%). The second search included 51/99 full texts, reporting improvement (28, 54.9%), significance (11, 21.5%), statistical significance (1, 1.9%) and no difference compared to the control (6, 11.7%). The majority in the first focused on mood and agitation, and the second on mood and psychophysiological responses. Five studies used AI or machine learning systems to select music, all involving healthy controls and reporting benefits. Most studies in both reviews were not conducted in a home environment (review 1 = 12; 17.1%; review 2 = 11; 21.5%). Preferred music listening may help manage NPS in the care home settings. Based on these and other data extracted in the review, a reasonable progression would be to co-design and test music listening systems and protocols for NPS in all settings, including people’s homes. Machine learning and automated technology for music selection and arousal adjustment, driven by live biodata, have not been explored in dementia care. Such approaches may help deliver the right music at the appropriate time in the required dosage, reducing the use of medication and improving quality of life.Keywords: music listening, dementia, agitation, scoping review, technology
Procedia PDF Downloads 11825100 The Situation in Afghanistan as a Step Forward in Putting an End to Impunity
Authors: Jelena Radmanovic
Abstract:
On 5 March 2020, the International Criminal Court has decided to authorize the investigation into the crimes allegedly committed on the territory of Afghanistan after 1 May 2003. The said determination has raised several controversies, including the recently imposed sanctions by the United States, furthering the United States' long-standing rejection of the authority of the International Criminal Court. The purpose of this research is to address the said investigation in light of its importance for the prevention of impunity in the cases where the perpetrators are nationals of Non-Party States to the Rome Statute. Difficulties that the International Criminal Court has been facing, concerning the establishment of its jurisdiction in those instances where an involved state is not a Party to the Rome Statute, have become the most significant stumbling block undermining the importance, integrity, and influence of the Court. The Situation in Afghanistan raises even further concern, bearing in mind that the Prosecutor’s Request for authorization of an investigation pursuant to article 15 from 20 November 2017 has initially been rejected with the ‘interests of justice’ as an applied rationale. The first method used for the present research is the description of the actual events regarding the aforementioned decisions and the following reactions in the international community, while with the second method – the method of conceptual analysis, the research will address the decisions pertaining to the International Criminal Court’s jurisdiction and will attempt to address the mentioned Decision of 5 March 2020 as an example of good practice and a precedent that should be followed in all similar situations. The research will attempt parsing the reasons used by the International Criminal Court, giving rather greater attention to the latter decision that has authorized the investigation and the points raised by the officials of the United States. It is a find of this research that the International Criminal Court, together with other similar judicial instances (Nuremberg and Tokyo Tribunals, The International Criminal Tribunal for the former Yugoslavia, The International Criminal Tribunal for Rwanda), has presented the world with the possibility of non-impunity, attempting to prosecute those responsible for the gravest of crimes known to the humanity and has shown that such persons should not enjoy the benefits of their immunities, with its focus primarily on the victims of such crimes. Whilst it is an issue that will most certainly be addressed further in the future, with the situations that will be brought before the International Criminal Court, the present research will make an attempt at pointing to the significance of the situation in Afghanistan, the International Criminal Court as such and the international criminal justice as a whole, for the purpose of putting an end to impunity.Keywords: Afghanistan, impunity, international criminal court, sanctions, United States
Procedia PDF Downloads 13125099 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 10225098 Effects Of Obesity On Periodontal Tissues.
Authors: Benhamouda Amira Chaimae
Abstract:
Obesity is a significant health concern that not only affects overall well-being but also increases the risk of developing periodontal disease, a serious gum condition that can lead to tooth loss and other complications. Individuals with obesity are more prone to chronic inflammation, which can exacerbate periodontal issues, making them more vulnerable to its onset and progression. Additionally, managing the health complications associated with obesity, including periodontal disease, leads to increased health care costs for these patients. This underscores the importance of addressing obesity as part of a comprehensive approach to improving both oral and systemic health outcomes.Keywords: obesity, periodontal, health, tooth
Procedia PDF Downloads 1225097 Exploring the Effective Learning Strategies for the Adult Learners in India: An Exploratory Study of Malcolm Knowls Principles and Their Use in the Education Policies of India with a Special Focus on the New India Literacy Programme
Authors: Km Tanu
Abstract:
It has been widely accepted that the learning style of adults and children is different, the learning motivation among adults vary, and even their learning preferences cannot be predetermined. In India, where the population is widely diverse and socio-economic and cultural disparities are there, the learning strategies should also be according to their needs and preferences. The present study explores the concept of adult learners in India in order to understand their needs and styles better. The adult learning principles of Malcolm Knowles have been analyzed, and its presence in the different policies and programs has been traced. To what extent these principles and other such concepts would be beneficial for the Indian population and for effective learning strategies, and what contextual understanding is needed, has been argued in the study. Descriptive research methodology, along with content and thematic analyses, has been used for the paper. It has been argued that there are four areas that play crucial roles in making learning effective. These are the learner, the facilitator, the resources and the policy. The prior experiences of the learners, their motivation, the group to which they belong (i.e., the learning styles and the strategies can be varied for the group of farmers and migrant laborers), and their expected outcome play an important role in making any adult education program successful but along with this, the role of facilitator or the educator is also very important as it is not easy to deal with the adult learners, the understanding that the task is not to teach the adult learners but to make them learn and to use their prior knowledge is a task in itself, proper training is needed for that matter. Many times, it has been seen that adult education programs are poorly funded, or even if they are funded, the fund is not utilized well; the unavailability of the resources is one of the reasons for the failure of adult education programs, and if we see these four points as a triangle, at the bottom, there is a policy document. A well-stated and described doable policy document is also equally important.Keywords: adult education, Indian adult learner, effective learning styles, Malcolm Knowles learning principles, adult education policies and program
Procedia PDF Downloads 7125096 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 1725095 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 38625094 Investigating the Contemporary Architecture Education Challenges in India
Authors: Vriddhi Prasad
Abstract:
The paper briefly outlines the nature of contemporary Architecture Education in India and its present challenges with theoretically feasible solutions. It explores in detail the arduous position of architecture education owing to, privatization of higher education institutes in India, every changing demand of the technology driven industry and discipline, along with regional and cultural resources that should be explored academically for the enrichment of graduates. With the government's education policy of supporting privatization, a comprehensive role for the regulating body of Architecture Education becomes imperative. The paper provides key insights through empirical research into the nature of these roles and the areas which need attention in light of the problems. With the aid of critically acclaimed education model like Design Build, contextual retrofits for Indian institutes can be stressed for inclusion in the curriculum. The pairing of a private institute and public industry/research body and vice versa can lead to pro-economic and pro-social research environment. These reforms if stressed by an autonomous nationwide regulating body rather than the state will lead to uniformity and flexibility of curriculum which promotes the creation of fresh graduates who are adaptable to the changing needs.Keywords: architecture education, building information modelling, design build, pedagogy
Procedia PDF Downloads 22925093 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco
Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio
Abstract:
Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology
Procedia PDF Downloads 16825092 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles
Abstract:
During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium
Procedia PDF Downloads 31325091 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries
Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni
Abstract:
In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm
Procedia PDF Downloads 12225090 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 37025089 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 22725088 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 51725087 Perceptions of Pregnant Women on the Transitional Use of Traditional Medicine in the Transitional District Western Uganda
Authors: Demmiele Matu Kiiza, Constantine Steven Labongo Loum, Julaina Obika Asinasi
Abstract:
Background: The use of traditional medicine in Uganda forms the preliminary therapeutic approaches among many people. Traditional medicines have been used in Uganda for many years, not only for the management of pregnancy-related complications but also for the management of other physical and psychological illnesses. Traditional medicines are always considered the first line of treatment by a considerable number of people. This study, therefore, sought to explore the lived experiences of pregnant women by assessing their perceptions of the transitional use of traditional medicine. Methods: Ethnography was used to capture data from an emic perspective. The ethnographic approach involved visiting a few selected pregnant women to observe and participate in the identification of traditional medicines. The ethnographic fieldwork was carried out within a period of three months. In-depth interviews were carried out and audio recorded and later transcribed verbatim. Data was thereafter analyzed thematically. The thematic analysis involved identifying statements made by research participants by transcribing audio and reading through field notes, coding was done, and themes were generated according to commonly mentioned experiences of using traditional medicine. Results: The findings revealed that women performed a ritual of ‘cutting the cord’ by making a small horizontal incision on the belly across the linea Nigra (also known as a pregnancy line) at around six months of pregnancy to avoid producing a baby with an umbilical cord tied around the baby’s neck. They also used crushed egg shells, crushed snail shells and herbs such as pawpaw roots, Entarahompo (crassocephalum vitelline), Ekyoganyanja (Erlangea tomentose), to manage Omushohokye (a term used by the study participants to refer to a situation where women pass out too much water when giving birth, producing a child with mold and oozing out of a milky liquid through the breasts before giving births); prepare for safe delivery and also to manage pregnancy-related complications. The study recommends the implementation of a traditional medicine use policy using a bottom-up approach. Designing and implementing of culturally sensitive maternal healthcare intervention programs and involving village health teams and the elderly in health education.Keywords: traditional medicine, pregnant women, uganda, perceptions
Procedia PDF Downloads 10925086 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: carbon nanotubes, static friction, dynamic friction
Procedia PDF Downloads 31725085 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 12725084 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake
Procedia PDF Downloads 17625083 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 38125082 Early Return to Play in Football Player after ACL Injury: A Case Report
Authors: Nicola Milani, Carla Bellissimo, Davide Pogliana, Davide Panzin, Luca Garlaschelli, Giulia Facchinetti, Claudia Casson, Luca Marazzina, Andrea Sartori, Simone Rivaroli, Jeff Konin
Abstract:
The patient is a 26 year-old male amateur football player from Milan, Italy; (81kg; 185cm; BMI 23.6 kg/m²). He sustained a non-contact anterior cruciate ligament tear to his right knee in June 2021. In September 2021, his right knee ligament was reconstructed using a semitendinosus graft. The injury occurred during a football match on natural grass with typical shoes on a warm day (32 degrees celsius). Playing as a defender he sustained the injury during a change of direction, where the foot was fixated on the grass. He felt pain and was unable to continue playing the match. The surgeon approved his rehabilitation to begin two weeks post-operative. The initial physiotherapist assessment determined performing two training sessions per day within the first three months. In the first three weeks, the pain was 4/10 on Numerical Rating Scale (NRS), no swelling, a range of motion was 0-110°, with difficulty fully extending his knee and minimal quadriceps activation. Crutches were discontinued at four weeks with improved walking. Active exercise, electrostimulator, physical therapy, massages, osteopathy, and passive motion were initiated. At week 6, he completed his first functional movement screen; the score was 16/21 with no pain and no swelling. At week 8, the isokinetic test showed a 23% differential deficit between the two legs in maximum strength (at 90°/s). At week 10, he improved to 15% of injury-induced deficit which suggested he was ready to start running. At week 12, the athlete sustained his first threshold test. At week 16, he performed his first return to sports movement assessment, which revealed a 10% stronger difference between the legs. At week 16, he had his second threshold test. At week 17, his first on-field test revealed a 5% differential deficit between the two legs in the hop test. At week 18, isokinetic test demonstrates that the uninjured leg was 7% stronger than the recovering leg in maximum strength (at 90°/s). At week 20, his second on-field test revealed a 2% difference in hop test; at week 21, his third isokinetic test demonstrated a difference of 5% in maximum strength (at 90°/s). At week 21, he performed his second return to sports movement assessment which revealed a 2% difference between the limbs. Since it was the end of the championship, the team asked him to partake in the playoffs; moreover the player was very motivated to participate in the playoffs also because he was the captain of the team. Together with the player and the team, we decided to let him play even though we were aware of a heightened risk of injury than what is reported in the literature because of two factors: biological recovery times and the results of the tests we performed. In the decision making process about the athlete’s recovery time, it is important to balance the information available from the literature with the desires of the patient to avoid frustration.Keywords: ACL, football, rehabilitation, return to play
Procedia PDF Downloads 12625081 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 375