Search results for: active snubber cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6938

Search results for: active snubber cell

1478 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.

Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities

Procedia PDF Downloads 156
1477 Comparative Evaluation of Seropositivity and Patterns Distribution Rates of the Anti-Nuclear Antibodies in the Diagnosis of Four Different Autoimmune Collagen Tissue Diseases

Authors: Recep Kesli, Onur Turkyilmaz, Cengiz Demir

Abstract:

Objective: Autoimmune collagen diseases occur with the immune reactions against the body’s own cell or tissues which cause inflammation and damage the tissues and organs. In this study, it was aimed to compare seropositivity rates and patterns of the anti-nuclear antibodies (ANA) in the diagnosis of four different autoimmune collagen tissue diseases (Rheumatoid Arthritis-RA, Systemic Lupus Erythematous-SLE, Scleroderma-SSc and Sjogren Syndrome-SS) with each other. Methods: One hundred eighty-eight patients applied to different clinics in Afyon Kocatepe University ANS Practice and Research Hospital between 11.07.2014 and 14.07.2015 that thought the different collagen disease such as RA, SLE, SSc and SS have participated in the study retrospectively. All the data obtained from the patients participated in the study were evaluated according to the included criteria. The historical archives belonging to the patients have been screened, assessed in terms of ANA positivity. The obtained data was analysed by using the descriptive statistics; chi-squared, Fischer's exact test. The evaluations were performed by SPSS 20.0 version and p < 0.05 level was considered as significant. Results: Distribution rates of the totally one hundred eighty-eight patients according to the diagnosis were found as follows: 82 (43.6%) were RA, 38 (20.2%) were SLE, 22 (11.7%) were SSc, and 46 (24.5%) were SS. Distribution of ANA positivity rates according to the collagen tissue diseases were found as follows; for RA were 54 (65,9 %), for SLE were 36 (94,7 %), for SSc were 18 (81,8 %), and for SS were 43 (93,5 %). Rheumatoid arthritis should be evaluated and classified as a different class among all the other investigated three autoimmune illnesses. ANA positivity rates were found as differently higher (91.5 %) in the SLE, SSc, and SS, from the RA (65.9 %). Differences at ANA positivity rates for RA and the other three diseases were found as statistically significant (p=0.015). Conclusions: Systemic autoimmune illnesses show broad spectrum. ANA positivity was found as an important predictor marker in the diagnosis of the rheumatologic illnesses. ANA positivity should be evaluated as more valuable and sensitive a predictor diagnostic marker in the laboratory findings of the SLE, SSc, and SS according to RA.

Keywords: antinuclear antibody (ANA), rheumatoid arthritis, scleroderma, Sjogren syndrome, systemic lupus Erythemotosus

Procedia PDF Downloads 243
1476 Disaster Education and Children with Visual Impairment

Authors: Vassilis Argyropoulos, Magda Nikolaraizi, Maria Papazafiri

Abstract:

This study describes a series of learning workshops, which took place within CUIDAR project. The workshops aimed to empower children to share their experiences and views in relation to natural hazards and disasters. The participants in the workshops were ten primary school students who had severe visual impairments or multiple disabilities and visual impairments (MDVI). The main objectives of the workshops were: a) to promote access of the children through the use of appropriate educational material such as texts in braille, enlarged text, tactile maps and the implementation of differentiated instruction, b) to make children aware regarding their rights to have access to information and to participate in planning and decision-making especially in relation to disaster education programs, and c) to encourage children to have an active role during the workshops through child-led and experiential learning activities. The children expressed their views regarding the meaning of hazards and disasters. Following, they discussed their experiences and emotions regarding natural hazards and disasters, and they chose to place the emphasis on a hazard, which was more pertinent to them, their community and their region, namely fires. Therefore, they recalled fires that have caused major disasters, and they discussed about the impact that these fires had on their community or on their country. Furthermore, they were encouraged to become aware regarding their own role and responsibility to prevent a fire or get prepared and know how to behave if a fire occurs. They realized that prevention and preparation are a matter of personal responsibility. They also felt the responsibility to inform their own families. Finally, they met important people involved in fire protection such as rescuers and firefighters and had the opportunity to carry dialogues. In conclusion, through child led workshops, experiential and accessible activities, the students had the opportunity to share their own experiences, to express their views and their questions, to broaden their knowledge and to realize their personal responsibility in disaster risk reduction, specifically in relation to fires.

Keywords: accessibility, children, disasters, visual impairment

Procedia PDF Downloads 213
1475 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 129
1474 Pale, Soft, Exudative (PSE) Turkey Meat in a Brazilian Commercial Processing Plant

Authors: Danielle C. B. Honorato, Rafael H. Carvalho, Adriana L. Soares, Ana Paula F. R. L. Bracarense, Paulo D. Guarnieri, Massami Shimokomaki, Elza I. Ida

Abstract:

Over the past decade, the Brazilian production of turkey meat increased by more than 50%, indicating that the turkey meat is considered a great potential for the Brazilian economy contributing to the growth of agribusiness at the marketing international scenario. However, significant color changes may occur during its processing leading to the pale, soft and exudative (PSE) appearance on the surface of breast meat due to the low water holding capacity (WHC). Changes in PSE meat functional properties occur due to the myofibrils proteins denaturation caused by a rapid postmortem glycolysis resulting in a rapid pH decline while the carcass temperature is still warm. The aim of this study was to analyze the physical, chemical and histological characteristics of PSE turkey meat obtained from a Brazilian commercial processing plant. The turkey breasts samples were collected (n=64) at the processing line and classified as PSE at L* ≥ 53 value. The pH was also analyzed after L* measurement. In sequence, PSE meat samples were evaluated for WHC, cooking loss (CL), shear force (SF), myofibril fragmentation index (MFI), protein denaturation (PD) and histological evaluation. The abnormal color samples presented lower pH values, 16% lower fiber diameter, 11% lower SF and 2% lower WHC than those classified as normal. The CL, PD and MFI were, respectively, 9%, 18% and 4% higher in PSE samples. The Pearson correlation between the L* values and CL, PD and MFI was positive, while that SF and pH values presented negative correlation. Under light microscopy, a shrinking of PSE muscle cell diameter was approximately 16% shorter in relation to normal samples and an extracellular enlargement of endomysium and perimysium sheaths as the consequence of higher water contents lost as observed previously by lower WHC values. Thus, the results showed that PSE turkey breast meat presented significant changes in their physical, chemical and histological characteristics that may impair its functional properties.

Keywords: functional properties, histological evaluation, meat quality, PSE

Procedia PDF Downloads 460
1473 A Suggested Study Plan for Mining Engineering Program in Northern Border University (NBU) to Match the Requirements of the Local Mining Industry

Authors: Mohammad Aljuhani, Yasamina Aljuhani

Abstract:

The Mining Engineering Department at College of Engineering in NBU is under establishment. It is essential to establish such department in NBU. This is because, it is the only university in the region. Moreover, the mining industry is very active in the northern borders region. However, there is no mining engineering department in KSA except one in King Abdulziz University, which is 1400 km from the mining industry in the northern borders. As a result, department graduates from KAU find difficulties to get suitable jobs in their specialization in spite of their few numbers graduated per year and the presence of many jobs vacancies at the local mining sector. Therefore, the objectives of this research are to identify, measure and analyze the above mentioned problem from educational point of view. One more objective is to add a contribution towards solving such vital, society affecting problem. For achieving the first task of the research, that is problem size identification and analyses, a questionnaire was designed. The questionnaire was directed towards experienced engineers, in the mining and related industries, including the ministry of petroleum and minerals, Saudi Geological Survey, and Ma’aden Company as being prospective employers for the mining sector. The questionnaire target was to evaluate the Saudi mining engineers from an industrial point of view and to detect the main reasons behind their failure to find jobs. In addition, the study focuses in the demand of mining engineers in the northern borders region. Moreover, the study plan of the suggested department is designed based on the requirements of the mining industry. The feedback received from the industry reflected major educational shortcomings. In order to overcome the revealed defects, the second objective of the research was achieved where a suggested study plan “curriculum” has been prepared to take into consideration all the points of weakness so as to improve the graduates’ quality to fit the local mining work market.

Keywords: mining engineering, labor market, qualifications, curriculum, mining industry, mining engineers

Procedia PDF Downloads 271
1472 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 82
1471 Challenges, Chances and Possibilities during the Change Management Process of the National Defence Academy Vienna

Authors: Georg Ebner

Abstract:

The National Defence Academy, an element of the Austrian Ministry of Defence, is undergoing a transition process leading the Academy towards a new target structure that is currently being developed. In so doing, in addition to a subject-oriented approach, also an employee-oriented process was introduced. This process was initiated by the Ministry of Defence and should lead the National Defence Academy into a new constellation. During this process, the National Defence Academy worked in very special adapted World Café sessions. The “change manager” dealed with very different issues. They took the data feedback from the sessions and prepared with the feedback and information from the guidance the next session. So they got various information and a very different picture around the academy. It was very helpful to involve most of the employees of the academy during this process and to take their knowledge and wisdom. The process himself started with very different feelings and ended with great consent. A very interesting part of this process was also that the commander and his deputy worked together during all of this sessions and they answered all questions from the employees in time. The adapted World Café phases were necessary to deal with the information of the staff and to implement these absolutely needful data into this process. In cooperation with the responsible Headquarters, the first items resulting from the World Café phases could already be fed back to the employees and be implemented. The staff-oriented process is currently supported via a point of contact, through which the staff can contribute ideas as well, but also by the active information policy on the part of the Headquarters. The described change process makes innovative innovations possible. So far, in the event of change processes staff members have been entrusted only with the concrete implementation plan and tied into the process when the respective workplaces were to be re-staffed. The procedure described here can be seen as food-for-thought for further change processes. The findings of this process are that a staff oriented process can lead an organisation into a new era of thinking and working. This process has shown, that a lot of innovative ideas can also take place in a ministry. This process can be a background for a lot of change management processes in ministries and governmental and non-governmental organisations.

Keywords: both directions approach, change management, knowledge database, transformation process, World Cafe

Procedia PDF Downloads 192
1470 Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

Authors: Mohammad Faheem, M. Tabish Rehman, Mohd Danishuddin, Asad U. Khan

Abstract:

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

Keywords: ESBL, non-b-lactam-b-lactamase inhibitor, bioinformatics, biomedicine

Procedia PDF Downloads 238
1469 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 343
1468 Seismic Hazard Assessment of Tehran

Authors: Dorna Kargar, Mehrasa Masih

Abstract:

Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.

Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters

Procedia PDF Downloads 70
1467 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data

Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat

Abstract:

Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.

Keywords: canopy backscatter, drought, polarization, NDVI

Procedia PDF Downloads 145
1466 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System

Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España

Abstract:

Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.

Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim

Procedia PDF Downloads 79
1465 Automation of Savitsky's Method for Power Calculation of High Speed Vessel and Generating Empirical Formula

Authors: M. Towhidur Rahman, Nasim Zaman Piyas, M. Sadiqul Baree, Shahnewaz Ahmed

Abstract:

The design of high-speed craft has recently become one of the most active areas of naval architecture. Speed increase makes these vehicles more efficient and useful for military, economic or leisure purpose. The planing hull is designed specifically to achieve relatively high speed on the surface of the water. Speed on the water surface is closely related to the size of the vessel and the installed power. The Savitsky method was first presented in 1964 for application to non-monohedric hulls and for application to stepped hulls. This method is well known as a reliable comparative to CFD analysis of hull resistance. A computer program based on Savitsky’s method has been developed using MATLAB. The power of high-speed vessels has been computed in this research. At first, the program reads some principal parameters such as displacement, LCG, Speed, Deadrise angle, inclination of thrust line with respect to keel line etc. and calculates the resistance of the hull using empirical planning equations of Savitsky. However, some functions used in the empirical equations are available only in the graphical form, which is not suitable for the automatic computation. We use digital plotting system to extract data from nomogram. As a result, value of wetted length-beam ratio and trim angle can be determined directly from the input of initial variables, which makes the power calculation automated without manually plotting of secondary variables such as p/b and other coefficients and the regression equations of those functions are derived by using data from different charts. Finally, the trim angle, mean wetted length-beam ratio, frictional coefficient, resistance, and power are computed and compared with the results of Savitsky and good agreement has been observed.

Keywords: nomogram, planing hull, principal parameters, regression

Procedia PDF Downloads 405
1464 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 302
1463 A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations

Authors: Muhammad Saqib Manzoor, Camille Dickson-Deane, Prashan Karunaratne

Abstract:

Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes.

Keywords: cobb-douglas production function, quasi-Delphi method, effective teaching and learning, 3D-visualisations

Procedia PDF Downloads 145
1462 Empowering Teachers to Bolster Vocational Education in Cameroon

Authors: Ambissah Asah Brigitte

Abstract:

This research is guided by observations in the types of education offered at the secondary level in Cameroon. The secondary education system in Cameroon comprises two types of education, including General Education and Technical and Vocational Education. Although General Education and, Technical and Vocational Education are given equal importance by public authorities, General Education remains on the thriving trend, enjoying the greatest enrolment. In the meantime, Technical and Vocational Education is still to reach the adequate momentum expected to fostering the country’s full-fledged development, as specified in the National Development Strategy, which is the blue print of State policies in Cameroon for the 2020-2030 decade. Vocational Education is credited for its ability to foster a country’s development, since it teaches students the precise skills and knowledge needed to carry out a specific craft, technical skill or trade. Yet, formal training on Vocational Education for teachers offers a pale face in secondary education. This limits the ability of the educational system to nurture vocations and provide the country’s economy with the manpower necessary to achieving development goals. This article seeks to analyse how concretely does the institutional framework spur vocational skills in secondary school teachers. It overviews the instruments instituting Vocational Education at the secondary level in Cameroon, then assesses their effective implementation on the ground. Questionnaires addressed to both active teachers and vocational education policy-makers serve to collect data which are analysed using descriptive statistics. The final objective is to contribute in the debate urging to rethink the role of teachers in bolstering Vocational Education, which is the cornerstone of industrial development. This is true everywhere in the world. In Cameroon and in Africa in general, teachers must be empowered in this field with specific sets of competencies they will need to pass on to learners. They equally need to be given opportunities to acquire and adapt their knowledge and teaching skills accordingly.

Keywords: vocational education, cameroon, institutional framework, national development, competencies and skills

Procedia PDF Downloads 73
1461 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species

Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb

Abstract:

This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.

Keywords: heavy metal, fungal biomass, biosorption, kinetics

Procedia PDF Downloads 122
1460 The Efficacy of Pre-Hospital Packed Red Blood Cells in the Treatment of Severe Trauma: A Retrospective, Matched, Cohort Study

Authors: Ryan Adams

Abstract:

Introduction: Major trauma is the leading cause of death in 15-45 year olds and a significant human, social and economic costs. Resuscitation is a stalwart of trauma management, especially in the pre-hospital environment and packed red blood cells (pRBC) are being increasingly used with the advent of permissive hypotension. The evidence in this area is lacking and further research is required to determine its efficacy. Aim: The aim of this retrospective, matched cohort study was to determine if major trauma patients, who received pre-hospital pRBC, have a difference in their initial emergency department cardiovascular status; when compared with injury-profile matched controls. Methods: The trauma databases of the Royal Brisbane and Women's Hospital, Royal Children's Hospital (Herston) and Queensland Ambulance Service were accessed and major trauma patient (ISS>12) data, who received pre-hospital pRBC, from January 2011 to August 2014 was collected. Patients were then matched against control patients that had not received pRBC, by their injury profile. The primary outcomes was cardiovascular status; defined as shock index and Revised Trauma Score. Results: Data for 25 patients who received pre-hospital pRBC was accessed and the injury profiles matched against suitable controls. On admittance to the emergency department, a statistically significant difference was seen in the blood group (Blood = 1.42 and Control = 0.97, p-value = 0.0449). However, the same was not seen with the RTS (Blood = 4.15 and Control 5.56, p-value = 0.291). Discussion: A worsening shock index and revised trauma score was associated with pre-hospital administration of pRBC. However, due to the small sample size, limited matching protocol and associated confounding factors it is difficult to draw any solid conclusions. Further studies, with larger patient numbers, are required to enable adequate conclusions to be drawn on the efficacy of pre-hospital packed red blood cell transfusion.

Keywords: pre-hospital, packed red blood cells, severe trauma, emergency medicine

Procedia PDF Downloads 394
1459 Cost Effective Microfabrication Technique for Lab on Chip (LOC) Devices Using Epoxy Polymers

Authors: Charmi Chande, Ravindra Phadke

Abstract:

Microfluidics devices are fabricated by using multiple fabrication methods. Photolithography is one of the common methods wherein SU8 is widely used for making master which in turn is used for making working chip by the process of soft lithography. The high-aspect ratio features of SU-8 makes it suitable to be used as micro moulds for injection moulding, hot embossing, and moulds to form polydimethylsiloxane (PDMS) structures for bioMEMS (Microelectromechanical systems) applications. But due to high cost, difficulty in procuring and need for clean room, restricts the use of this polymer especially in developing countries and small research labs. ‘Bisphenol –A’ based polymers in mixture with curing agent are used in various industries like Paints and coatings, Adhesives, Electrical systems and electronics, Industrial tooling and composites. We present the novel use of ‘Bisphenol – A’ based polymer in fabricating micro channels for Lab On Chip(LOC) devices. The present paper describes the prototype for production of microfluidics chips using range of ‘Bisphenol-A’ based polymers viz. GY 250, ATUL B11, DER 331, DER 330 in mixture with cationic photo initiators. All the steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. This even excludes the need of clean room. The produced chips using all above mentioned polymers were validated with respect to height and the chip giving least height was selected for further experimentation. The lowest height achieved was 7 micrometers by GY250. The cost of the master fabricated was $ 0.20 and working chip was $. 0.22. The best working chip was used for morphological identification and profiling of microorganisms from environmental samples like soil, marine water and salt water pan sites. The current chip can be adapted for various microbiological screening experiments like biochemical based microbial identification, studying uncultivable microorganisms at single cell/community level.

Keywords: bisphenol–A based epoxy, cationic photoinitiators, microfabrication, photolithography

Procedia PDF Downloads 287
1458 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia

Procedia PDF Downloads 236
1457 Pattern of Prostate Specific Antigen Request in a Tertiary Health Institution S’ Tumor Marker Laboratory in Nigeria: A Two Year Review

Authors: Ademola Azeez

Abstract:

Background: This study is a two year review of requests pattern for Prostate Specific Antigen (PSA), in a Nigerian tertiary health care institution. Prostate specific antigen was first described about 44 years ago but is still in use today for, diagnosis, monitoring, screening and prognosis of prostatic carcinoma though not-very specific as was widely believed. Prostate cancer is an increasingly important public health problem among adult men worldwide. Nigeria, which was formerly regarded as a low-incidence area by several authors is now witnessing a steep rise in the occurrence of this disease. This has been suggested to be due to increasing availability of screening tests and diagnostic facilities and not necessarily because of increased incidence of the diseases. Many notable Nigerians have died due to this dreaded disease. Methods: All plasma samples for PSA from January 2021-December 2022 were analyzed weekly by abbot autoanalyser, chemiluminescence assay method. Bio-data from request form were collated and analyzed. A total of 385 requests were received for the period under review. Result: There was an increase of request from inception to the last year of review. Smoked food, consumption of local herb and alcohol in order of importance, respectively, appears to be prominent factor in patient requested for PSA. The mean age was 67.years; the youngest was 29, while the oldest was 93years. Age 70 has the highest frequency of 8.5% .Mean PSA was 12.9ng/ml. There was a positive correlation between age and PSA (R=0.255, P < 0.05).Significant increase in PSA with age were reported. Men who retired from active jobs constitute the highest request for PSA test. Conclusion: There was an increasing trend in the proportion of requests with values outside the reference interval especially in patients diagnosed of benign prostatic hyperplasia, prostate cancer, while some routine test for PSA were elevated for the first time .This is in line with earlier report of increasing incidence of prostate cancer in Nigeria despite the increasing knowledge of healthy lifestyle.

Keywords: pattern, PSA, tertiary institution, Nigeria

Procedia PDF Downloads 29
1456 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 422
1455 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt

Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah

Abstract:

With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.

Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA

Procedia PDF Downloads 410
1454 Battling against the Great Disruption to Surgical Care in a Pandemic: Experience of Eleven South and Southeast Asian Countries

Authors: Naomi Huang Wenya, Xin Xiaohui, Vijaya Rao, Wong Ting Hway, Chow Kah Hoe Pierce, Tan Hiang Khoon

Abstract:

Background: The majority of the cancelled elective surgeries caused by the COVID-19 pandemic globally were estimated to occur in low- and middle-income countries (LMICs), where surgical services had long been in short supply even before the pandemic. Therefore, minimising disruption to existing surgical care in LMICs is of crucial importance during a pandemic. This study aimed to explore contributory factors to the continuity of surgical care in LMICs, in the face of a pandemic. Methods: Semi-structured interviews were conducted over zoom, with surgical leaders of 25 tertiary hospitals from 11 LMICs in South and Southeast Asia, from September to October 2020. Key themes were subsequently identified from the interview transcripts, using Braun and Clarke's method of thematic analysis. Results: The COVID-19 pandemic affected all surgical services of participating institutions but to varying degrees. Overall, elective surgeries suffered the gravest disruption, followed by outpatient surgical care, and finally, emergency surgeries. Keeping healthcare workers safe and striving for continuity of essential surgical care emerged as notable response strategies observed across all participating institutions. Conclusion: This study suggested that four factors are important for the resilience of surgical care against COVID-19: adequate COVID-19 testing capacity and effective institutional infection control measures, designated COVID-19 treatment facilities, a whole-system approach to balancing pandemic response and meeting essential surgical needs, and active community engagement. These findings can inform healthcare institutions in other countries, especially LMICs, in their effort to tread a fine line between preserving healthcare capacity for pandemic response and protecting surgical services against pandemic disruption.

Keywords: COVID-19, pandemic, LMICs, continuity of surgical service

Procedia PDF Downloads 84
1453 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 132
1452 Psychological Distress and Quality of Life in Inflammatory Bowel Disease Patients: The Role of Dispositional Mindfulness

Authors: Kelly E. Tow, Peter Caputi, Claudia Rogge, Thomas Lee, Simon R. Knowles

Abstract:

Inflammatory Bowel Disease (IBD) is a serious chronic health condition, characterised by inflammation of the gastrointestinal tract. Individuals with active IBD experience severe abdominal symptoms, which can adversely impact their physical and mental health, as well as their quality of life (QoL). Given that stress may exacerbate IBD symptoms and is frequently highlighted as a contributing factor for the development of psychological difficulties and poorer QoL, it is vital to investigate stress-management strategies aimed at improving the lives of those with IBD. The present study extends on the limited research in IBD cohorts by exploring the role of dispositional mindfulness and its impact on psychological well-being and QoL. The study examined how disease activity and dispositional mindfulness were related to psychological distress and QoL in a cohort of IBD patients. The potential role of dispositional mindfulness as a moderator between stress and anxiety, depression and QoL in these individuals was also examined. Participants included 47 patients with a clinical diagnosis of IBD. Each patient completed a series of psychological questionnaires and was assessed by a gastroenterologist to determine their disease activity levels. Correlation analyses indicated that disease activity was not significantly related to psychological distress or QoL in the sample of IBD patients. However, dispositional mindfulness was inversely related to psychological distress and positively related to QoL. Furthermore, moderation analyses demonstrated a significant interaction between stress and dispositional mindfulness on anxiety. These findings demonstrate that increased levels of dispositional mindfulness may be beneficial for individuals with IBD. Specifically, the results indicate positive links between dispositional mindfulness, general psychological well-being and QoL, and suggest that dispositional mindfulness may attenuate the negative impacts of stress on levels of anxiety in IBD patients. While further research is required to validate and expand on these findings, the current study highlights the importance of addressing psychological factors in IBD and indicates support for the use of mindfulness-based interventions for patients with the disease.

Keywords: anxiety, depression, dispositional mindfulness, inflammatory bowel disease, quality of life, stress

Procedia PDF Downloads 159
1451 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 308
1450 A Tale of Seven Districts: Reviewing The Past, Present and Future of Patent Litigation Filings to Form a Two-Step Burden-Shifting Framework for 28 U.S.C. § 1404(a)

Authors: Timothy T. Hsieh

Abstract:

Current patent venue transfer laws under 28 U.S.C. § 1404(a) e.g., the Gilbert factors from Gulf Oil Corp. v. Gilbert, 330 U.S. 501 (1947) are too malleable in that they often lead to frequent mandamus orders from the U.S. Court of Appeals for the Federal Circuit (“Federal Circuit”) overturning district court rulings on venue transfer motions. Thus, this paper proposes a more robust two-step burden-shifting framework that replaces the eight Gilbert factors. Moreover, a brief history of venue transfer patterns in the seven most active federal patent district courts is covered, with special focus devoted to the venue transfer orders from Judge Alan D Albright of the U.S. District Court for the Western District of Texas. A comprehensive data summary of 45 case sets where the Federal Circuit ruled on writs of mandamus involving Judge Albright’s transfer orders is subsequently provided, with coverage summaries of certain cases including four precedential ones from the Federal Circuit. This proposed two-step burden shifting framework is then applied to these venue transfer cases, as well as Federal Circuit mandamus orders ruling on those decisions. Finally, alternative approaches to remedying the frequent reversals for venue transfer will be discussed, including potential legislative solutions, adjustments to common law framework approaches to venue transfer, deference to the inherent powers of Article III U.S. District Judge, and a unified federal patent district court. Overall, this paper seeks to offer a more robust and consistent three-step burden-shifting framework for venue transfer and for the Federal Circuit to follow in administering mandamus orders, which might change somewhat in light of Western District of Texas Chief Judge Orlando Garcia’s order on redistributing Judge Albright’s patent cases.

Keywords: Patent law, venue, judge Alan Albright, minimum contacts, western district of Texas

Procedia PDF Downloads 109
1449 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 166