Search results for: soil organic carbon stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8205

Search results for: soil organic carbon stock

2775 Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms

Authors: Sandrine Dourdain, Cesar Lopez, Tamir Sukhbaatar, Guilhem Arrachart, Stephane Pellet-Rostaing

Abstract:

A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation.

Keywords: solvent extraction in Ionic liquid, aggregation, Ionic liquids structure, SAXS, SANS

Procedia PDF Downloads 156
2774 Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode

Authors: Illyas Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II).

Keywords: chemically modified electrode, Cu(II), Square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 262
2773 The Effect of Land Cover on Movement of Vehicles in the Terrain

Authors: Krisstalova Dana, Mazal Jan

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths

Procedia PDF Downloads 425
2772 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold

Authors: Adil Elrayah, Jie Weng, Esra Suliman

Abstract:

The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.

Keywords: fiber scaffold, copper ions, hydroxyapatite, in vitro, mechanical property

Procedia PDF Downloads 155
2771 The New Family Law in Kuwait: A Step Towards International Standards

Authors: Dina Hadad

Abstract:

Women empowerment in the Arab world remains a central issue in the context of development and human rights. Akin to many societies around the globe, gender equality is yet to be achieved. This research will provide an introduction into the current legal stand of some Arab countries in terms of gender equality and women rights in the context of family law. It will look specifically into the recent family law in Kuwait and why many women consider it a positive step towards affirming their rights and their needs. Depending on comparative material from the area, the research argues that whilst some countries made efforts to promote women’s empowerment as a concept and practice throughout its policies, others have indeed some unique journeys that reflect organic and from within evolutions. Nonetheless, these efforts are yet to reflect a comprehensive structure that addresses women legal and political empowerment let alone social status. A contradiction in the realities of different Arab states is nothing new since the lack of comprehensive rights-based policy making in Arab countries has contributed to the disconnect between economic growth and development challenges.

Keywords: women empowerment, cultural challenges, gender equality, Islamic law, international standards, family law

Procedia PDF Downloads 195
2770 Design of Residential Geothermal Cooling System in Kuwait

Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi

Abstract:

Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.

Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy

Procedia PDF Downloads 85
2769 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology

Authors: Yunwei Zhang, Na Li, Yuhong Niu

Abstract:

Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.

Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection

Procedia PDF Downloads 133
2768 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation

Procedia PDF Downloads 296
2767 Heterogeneous Photocatalytic Degradation of Methylene Blue by Montmorillonite/CuxCd1-xs Nanomaterials

Authors: Horiya Boukhatem, Lila Djouadi, Hussein Khalaf, Rufino Manuel Navarro Yerga, Fernando Vaquero Gonzalez

Abstract:

Heterogeneous photo catalysis is an alternative method for the removal of organic pollutants in water. The photo excitation of a semi-conductor under ultra violet (UV) irradiation entails the production of hydroxyl radicals, one of the most oxidative chemical species. The objective of this study is the synthesis of nano materials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) and their application in photocatalysis of a cationic dye: methylene blue. The synthesized nano materials and montmorillonite were characterized by fourier transform infrared (FTIR). Test results of photo catalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nano materials montmorillonite/ CuxCd1-xS increase with the increasing of Cu concentration and it is significantly higher compared to that of sodium montmorillonite alone. The application of the kinetic model of Langmuir-Hinshelwood (L-H) to the photocatalytic test results showed that the reaction rate obeys to the first-order kinetic model.

Keywords: heterogeneous photo catalysis, methylene blue, montmorillonite, nano material

Procedia PDF Downloads 339
2766 Succinonitrile Modified Polyacrylamide as a Quasi-Solid Electrolyte for an Organic Based Electrochromic Device

Authors: Benjamin Orimolade, Emily Draper

Abstract:

The interest in all solid electrochromic devices (ECD) is ongoing. This is because these devices offer realistic applications of electrochromic materials in products such as sensors, windows and energy storage devices. The use of quasi-solid (gel) electrolytes for the construction of these ECDs is attractive because of their ease of preparation, availability, low cost, improved electrochromic performance, good ionic conductivity and prevention of leakages in ECDs. Herein, we developed a gel electrolyte consisting of polyacrylamide modified with succinonitrile for an ECD containing leucine-modified naphthalene diimide (NDI-L) as electrochromic material. The amount of succinonitrile in the gel was optimized, and the structure, surface morphology, and ionic conductivity of the electrolytes were assessed using microscopic techniques and electrochemical methods. The ECD fabricated with the gel electrolyte displayed good electrochromic performance with a fast switching response of up to 10 s and outstanding stability. These results add significant insight into understanding the inter- and intra-molecular interaction in succinonitrile gel electrolytes and provide a typical practicable high-performance gel electrolyte material for solid electrochromic devices.

Keywords: electrochromic device, gel electrolytes, naphthalene diimide, succinonitrile

Procedia PDF Downloads 60
2765 Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.

Authors: Ahmed M. Haddad, Hadeel S. El-Shaal, Gadallah M. Abu-Elreesh

Abstract:

Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals.

Keywords: biodiesel, bioremediation, fungi, heavy metals, lipids, oleaginous

Procedia PDF Downloads 226
2764 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark

Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li

Abstract:

Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.

Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy

Procedia PDF Downloads 356
2763 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador

Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio

Abstract:

Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.

Keywords: public transport, electric mobility, energy, ecuador

Procedia PDF Downloads 87
2762 Study the Effect of Sensitization on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints

Authors: Viranshu Kumar, Hitesh Arora, Pradeep Joshi

Abstract:

SS 304 is Austenitic stainless steel with Chromium and Nickel as basic constituents. It has excellent corrosion resistance properties and very good weldability. Austenitic stainless steels have superior mechanical properties at high temperatures and are used extensively in a range of applications. SS 304L has wide applications in various industries viz. Nuclear, Pharmaceutical, marine, chemical etc. due to its excellent applications and ease of joining this material has become very popular for fabrication as well as weld surfacing. Austenitic stainless steels have a tendency to form chromium depleted zones at the grain boundaries during welding and heat treatment, where chromium combines with available carbon in the vicinity of the grain boundaries, to produce an area depleted in chromium, and thus becomes susceptible to intergranular corrosion. This phenomenon is known as sensitization.

Keywords: sensitization, SS 304, GTAW, mechanical properties, carbideprecipitationHAZ, microstructure, micro hardness, tensile strength

Procedia PDF Downloads 398
2761 The Effect of H2S on Crystal Structure

Authors: C. Venkataraman B. E., J. Nagarajan B. E., V. Srinivasan M. Tech

Abstract:

For a better understanding on sulfide stress corrosion cracking, a theoretical approach based on crystal structure, molecule behavior, flow of electrons and electrochemical reaction is developed. Its impact on different materials such as carbon steel, low alloy, alloy for sour (H2S) environments is studied. This paper describes the theories on various disaster and failures occurred in the industry by Stress Corrosion Cracking (SCC). Parameters such as pH of process fluid, partial pressure of CO2, O2, Chlorine, effect of internal pressure (crystal structure deformation by stress), and external environment condition are considered. An analytical line graph is then created for process fluid parameter verses time, temperature, induced/residual stress due to local pressure build-up. By comparison with the load test result of NACE and ASTM, it is possible to predict and simplify the control of SCC by use of materials like ferritic, Austenitic material in the oil and gas & petroleum industries.

Keywords: crystal structure deformation, failure assessment, alloy-environment combination, H2S

Procedia PDF Downloads 401
2760 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods

Authors: Zerrin Erginkaya, Gözde Konuray

Abstract:

Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.

Keywords: animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives

Procedia PDF Downloads 377
2759 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 319
2758 The Effect of the Low Plastic Fines on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt Mixtures

Authors: El Metmati Abdelhaq

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The objective of this laboratory investigation is to study the influence of the fraction of low plastic fines and gradation on the mechanical behavior of sand-silt mixtures reconstituted in the laboratory. For this purpose, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations at two initial relative densities (Dr = 20 and 91 %) with different fines content ranging from 0 to 40 %. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The evaluation of the data indicates that the fines content and the gradation have significant influence on the friction angle and the cohesion.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 372
2757 Environmental Accounting Practice: Analyzing the Extent and Qualification of Environmental Disclosures of Turkish Companies Located in BIST-XKURY Index

Authors: Raif Parlakkaya, Mustafa Nihat Demirci, Mehmet Nuri Salur

Abstract:

Environmental pollution has detrimental effects on the quality of our life and its scope has reached such an extent that measures are being taken both at the national and international levels to reduce, prevent and mitigate its impact on social, economic and political spheres. Therefore, awareness of environmental problems has been increasing among stakeholders and accordingly among companies. It is seen that corporate reporting is expanding beyond environmental performance. Primary purpose of publishing an environmental report is to provide specific audiences with useful, meaningful information. This paper is intended to analyze the extent and qualification of environmental disclosures of Turkish publicly quoted firms and see how it varies from one sector to another. The data for the study were collected from annual activity reports of companies, listed on the corporate governance index (BIST-XKURY) of Istanbul Stock Exchange. Content analysis was the research methodology used to measure the extent of environmental disclosure. Accordingly, 2015 annual activity reports of companies that carry out business in some particular fields were acquired from Capital Market Board, websites of Public Disclosure Platform and companies’ own websites. These reports were categorized into five main aspects: Environmental policies, environmental management systems, environmental protection and conservation activities, environmental awareness and information on environmental lawsuits. Subsequently, each component was divided into several variables related to what each firm is supposed to disclose about environmental information. In this context, the nature and scope of the information disclosed on each item were assessed according to five different ways (N.I: No Information; G.E.: General Explanations; Q.E.: Qualitative Detailed Explanations; N.E.: Quantitative (numerical) Detailed Explanations; Q.&N.E.: Both Qualitative and Quantitative Explanations).

Keywords: environmental accounting, disclosure, corporate governance, content analysis

Procedia PDF Downloads 265
2756 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application

Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough

Abstract:

In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.

Keywords: casting, cast iron, microstructure, heat treating

Procedia PDF Downloads 105
2755 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film

Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi

Abstract:

In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.

Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy

Procedia PDF Downloads 179
2754 Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4

Authors: Li Liang

Abstract:

Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production.

Keywords: thermodynamics, acid-soluble titanium slag, preparation of TiCl4, chlorination

Procedia PDF Downloads 595
2753 An Approach to Spatial Planning for Water Conservation: The Case of Kovada Sub-Watershed (Turkey)

Authors: Aybike Ayfer Karadağ

Abstract:

Today, the amount of water available is decreasing day by day due to global warming, environmental problems and population increase. To protect water resources, it is necessary to take a lot of measures from the global scale to the local scale. Some of these measures are related to spatial planning studies. In this study, the impact of water process analysis was assessed in the development of spatial planning for water conservation. The study was conducted in the Kovada sub-watershed (Isparta, Turkey). By means of water process analysis, the way to reach underground water of surface water in the study area is mapped. In this context, plant cover, soil and rock permeability were evaluated holistically with geographic information systems technologies. Then, on the map, water permeability is classified and this is spatially expressed. The findings show that the permeability of the water is different in the study case. As a result, the water permeability map needs to be included in the planning for water conservation planning.

Keywords: water, conservation, spatial planning, water process analysis

Procedia PDF Downloads 217
2752 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 373
2751 Regenerative Agriculture Standing at the Intersection of Design, Mycology, and Soil Fertility

Authors: Andrew Gennett

Abstract:

Designing for fungal development means embracing the symbiotic relationship between the living system and built environment. The potential of mycelium post-colonization is explored for the fabrication of advanced pure mycelium products, going beyond the conventional methods of aggregating materials. Fruiting induction imparts desired material properties such as enhanced environmental resistance. Production approach allows for simultaneous generation of multiple products while scaling up raw materials supply suitable for architectural applications. The following work explores the integration of fungal environmental perception with computational design of built fruiting chambers. Polyporales, are classified by their porous reproductive tissues supported by a wood-like context tissue covered by a hard waterproofing coat of hydrobpobins. Persisting for years in the wild, these species represent material properties that would be highly desired in moving beyond flat sheets of arial mycelium as with leather or bacon applications. Understanding the inherent environmental perception of fungi has become the basis for working with and inducing desired hyphal differentiation. Working within the native signal interpretation of a mycelium mass during fruiting induction provides the means to apply textures and color to the final finishing coat. A delicate interplay between meeting human-centered goals while designing around natural processes of living systems represents a blend of art and science. Architecturally, physical simulations inform model design for simple modular fruiting chambers that change as fungal growth progresses, while biological life science principles describe the internal computations occurring within the fungal hyphae. First, a form filling phase of growth is controlled by growth chamber environment. Second, an initiation phase of growth forms the final exterior finishing texture. Hyphal densification induces cellular cascades, in turn producing the classical hardened cuticle, UV protective molecule production, as well, as waterproofing finish. Upon fruiting process completion, the fully colonized spent substrate holds considerable value and is not considered waste. Instead, it becomes a valuable resource in the next cycle of production scale-up. However, the acquisition of new substrate resources poses a critical question, particularly as these resources become increasingly scarce. Pursuing a regenerative design paradigm from the environmental perspective, the usage of “agricultural waste” for architectural materials would prove a continuation of the destructive practices established by the previous industrial regime. For these residues from fields and forests serve a vital ecological role protecting the soil surface in combating erosion while reducing evaporation and fostering a biologically diverse food web. Instead, urban centers have been identified as abundant sources of new substrate material. Diverting the waste from secondary locations such as food processing centers, papers mills, and recycling facilities not only reduces landfill burden but leverages the latent value of these waste steams as precious resources for mycelium cultivation. In conclusion, working with living systems through innovative built environments for fungal development, provides the needed gain of function and resilience of mycelium products. The next generation of sustainable fungal products will go beyond the current binding process, with a focus upon reducing landfill burden from urban centers. In final considerations, biophilic material builds to an ecologically regenerative recycling production cycle.

Keywords: regenerative agriculture, mycelium fabrication, growth chamber design, sustainable resource acquisition, fungal morphogenesis, soil fertility

Procedia PDF Downloads 66
2750 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation

Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez

Abstract:

The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.

Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion

Procedia PDF Downloads 148
2749 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 257
2748 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers

Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.

Keywords: solar energy, drying, agriculture, biotechnologie

Procedia PDF Downloads 80
2747 Application Use of Slaughterhouse Waste to Improve Nutrient Level in Apium glaviolens

Authors: Hasan Basri Jumin

Abstract:

Using the slaughterhouse waste combined to suitable dose of nitrogen fertilizer to Apium glaviolen gives the significant effect to mean relative growth rate. The same pattern also showed significantly in net assimilation rate. The net assimilation rate increased significantly during 42 days old plants. Combination of treatment of 100 ml/l animal slaughterhouse waste and 0.1 g/kg nitrogen fertilizer/kg soil increased the vegetative growth of Apium glaviolens. The biomass of plant and mean relative growth rate of Apium glaviolens were rapidly increased in 4 weeks after planting and gradually decreased after 35 days at the harvest time. Combination of 100 ml/l slaughterhouse waste and applied 0.1 g/kg nitrogen fertilizer has increased all parameters. The highest vegetative growth, biomass, mean relative growth rate and net assimilation rate were received from 0.56 mg-l.m-2.days-1.

Keywords: Apium glaviolent, nitrogen, pollutant, slaughterhouse, waste

Procedia PDF Downloads 366
2746 Studyt on New Strategies of Sustainable Neighbourhood Design Based on the 2014 Waf

Authors: Zhou Xiaowen China, Zhang Sanming China

Abstract:

Neighbourhood space as a very important part of city spaces, is an organic combination of material environment and spiritual achievement in people’ daily life, and has a real impact upon the sustainable development of the whole city. Looking back on the past 2014 World Architecture Festival (WAF), 4 out of 35winning buildings were neighbourhood designs, and all of them mentioned about space-sharing and sustainable development. In this paper, three award-winning cases were studied, including the world building of the year—the chapel (Vietnam, A21 studio), The Carve (Norway, A-Lab) and House for Trees (Vietnam, Vo Trong Nghia Architects). Urban context, planning, space construction and sustainable technology were discussed. Based on those, it was discovered that passive energy-saving technologies have been paid more and more attention, sharing space has been designed ingeniously, and the architectural forms of them reflect social inclusion and equity. This paper is aimed at summarizing the excellent works on the Festival and providing reference for the future design.

Keywords: neighbourhood design, 2014 World Architecture Festival (WAF), sustainable development, space-sharing

Procedia PDF Downloads 444