Search results for: relational possesive processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5899

Search results for: relational possesive processes

469 Mental Well-Being and Quality of Life: A Comparative Study of Male Leather Tannery and Non-Tannery Workers of Kanpur City, India

Authors: Gyan Kashyap, Shri Kant Singh

Abstract:

Improved mental health can be articulated as a good physical health and quality of life. Mental health plays an important role in survival of any one’s life. In today’s time people living with stress in life due to their personal matters, health problems, unemployment, work environment, living environment, substance use, life style and many more important reasons. Many studies confirmed that the significant proportion of mental health people increasing in India. This study is focused on mental well-being of male leather tannery workers in Kanpur city, India. Environment at work place as well as living environment plays an important health risk factors among leather tannery workers. Leather tannery workers are more susceptible to many chemicals and physical hazards, just because they are liable to be affected by their exposure to lots of hazardous materials and processes during tanning work in very hazardous work environment. The aim of this study to determine the level of mental health disorder and quality of life among male leather tannery and non-tannery workers in Kanpur city, India. This study utilized the primary data from the cross- sectional household study which was conducted from January to June, 2015 on tannery and non-tannery workers as a part of PhD program from the Jajmau area of Kanpur city, India. The sample of 286 tannery and 295 non-tannery workers has been collected from the study area. We have collected information from the workers of age group 15-70 those who were working at the time of survey for at least one year. This study utilized the general health questionnaire (GHQ-12) and work related stress scale to test the mental wellbeing of male tannery and non-tannery workers. By using GHQ-12 and work related stress scale, Polychoric factor analysis method has been used for best threshold and scoring. Some of important question like ‘How would you rate your overall quality of life’ on Likert scale to measure the quality of life, their earnings, education, family size, living condition, household assets, media exposure, health expenditure, treatment seeking behavior and food habits etc. Results from the study revealed that around one third of tannery workers had severe mental health problems then non-tannery workers. Mental health problem shown the statistically significant association with wealth quintile, 56 percent tannery workers had severe mental health problem those belong to medium wealth quintile. And 42 percent tannery workers had moderate mental health problem among those from the low wealth quintile. Work related stress scale found the statistically significant results for tannery workers. Large proportion of tannery and non-tannery workers reported they are unable to meet their basic needs from their earnings and living in worst condition. Important result from the study, tannery workers who were involved in beam house work in tannery (58%) had severe mental health problem. This study found the statistically significant association with tannery work and mental health problem among tannery workers.

Keywords: GHQ-12, mental well-being, factor analysis, quality of life, tannery workers

Procedia PDF Downloads 388
468 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits

Authors: Bryan Low

Abstract:

In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.

Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling

Procedia PDF Downloads 83
467 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications

Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz

Abstract:

GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.

Keywords: biomaterial, GFP, nano-fibers, protein expression

Procedia PDF Downloads 320
466 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning

Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.

Keywords: augmented reality, distance learning, STEM didactics, technology in education

Procedia PDF Downloads 130
465 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 353
464 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center

Authors: George Kassar, Phillip A. Cartwright

Abstract:

Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.

Keywords: education, neuro-diverse students, program effectiveness, Jones learning center

Procedia PDF Downloads 75
463 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 92
462 Digital Technology Relevance in Archival and Digitising Practices in the Republic of South Africa

Authors: Tashinga Matindike

Abstract:

By means of definition, digital artworks encompass an array of artistic productions that are expressed in a technological form as an essential part of a creative process. Examples include illustrations, photos, videos, sculptures, and installations. Within the context of the visual arts, the process of repatriation involves the return of once-appropriated goods. Archiving denotes the preservation of a commodity for storage purposes in order to nurture its continuity. The aforementioned definitions form the foundation of the academic framework and premise of the argument, which is outlined in this paper. This paper aims to define, discuss and decipher the complexities involved in digitising artworks, whilst explaining the benefits of the process, particularly within the South African context, which is rich in tangible and intangible traditional cultural material, objects, and performances. With the internet having been introduced to the African Continent in the early 1990s, this new form of technology, in its own right, initiated a high degree of efficiency, which also resulted in the progressive transformation of computer-generated visual output. Subsequently, this caused a revolutionary influence on the manner in which technological software was developed and uterlised in art-making. Digital technology and the digitisation of creative processes then opened up new avenues of collating and recording information. One of the first visual artists to make use of digital technology software in his creative productions was United States-based artist John Whitney. His inventive work contributed greatly to the onset and development of digital animation. Comparable by technique and originality, South African contemporary visual artists who make digital artworks, both locally and internationally, include David Goldblatt, Katherine Bull, Fritha Langerman, David Masoga, Zinhle Sethebe, Alicia Mcfadzean, Ivan Van Der Walt, Siobhan Twomey, and Fhatuwani Mukheli. In conclusion, the main objective of this paper is to address the following questions: In which ways has the South African art community of visual artists made use of and benefited from technology, in its digital form, as a means to further advance creativity? What are the positive changes that have resulted in art production in South Africa since the onset and use of digital technological software? How has digitisation changed the manner in which we record, interpret, and archive both written and visual information? What is the role of South African art institutions in the development of digital technology and its use in the field of visual art. What role does digitisation play in the process of the repatriation of artworks and artefacts. The methodology in terms of the research process of this paper takes on a multifacted form, inclusive of data analysis of information attained by means of qualitative and quantitative approaches.

Keywords: digital art, digitisation, technology, archiving, transformation and repatriation

Procedia PDF Downloads 52
461 Exposure of Pacu, Piaractus mesopotamicus Gill Tissue to a High Stocking Density: An Ion Regulatory and Microscopy Study

Authors: Wiolene Montanari Nordi, Debora Botequio Moretti, Mariana Caroline Pontin, Jessica Pampolini, Raul Machado-Neto

Abstract:

Gills are organs responsible for respiration and osmoregulation between the fish internal environment and water. Under stress conditions, oxidative response and gill plasticity to attempt to increase gas exchange area are noteworthy, compromising the physiological processes and therefore fish health. Colostrum is a dietary source of nutrients, immunoglobulin, antioxidant and bioactive molecules, essential for immunological protection and development of the gastrointestinal epithelium. The hypothesis of this work is that antioxidant factors present in the colostrum, unprecedentedly tested in gills, can minimize or reduce the alteration of its epithelium structure of juvenile pacu (Piaractus mesopotamicus) subjected to high stocking density. The histological changes in the gills architecture were characterized by the frequency, incidence and severity of the tissue alteration and ionic status. Juvenile (50 kg fish/m3) were fed with pelleted diets containing 0, 10, 20 or 30% of lyophilized bovine colostrum (LBC) inclusion and at 30 experimental days, gill and blood samples were collected in eight fish per treatment. The study revealed differences in the type, frequency and severity (histological alterations index – HAI) of tissue alterations among the treatments, however, no distinct differences in the incidence of alteration (mean alteration value – MAV) were observed. The main histological changes in gill were elevation of the lamellar epithelium, excessive cell proliferation of the filament and lamellar epithelium causing total or partial melting of the lamella, hyperplasia and hypertrophy of lamellar and filament epithelium, uncontrolled thickening of filament and lamellar tissues, mucous and chloride cells presence in the lamella, aneurysms, vascular congestion and presence of parasites. The MAV obtained per treatment were 2.0, 2.5, 1.8 and 2.5 to fish fed diets containing 0, 10, 20 and 30% of LBC inclusion, respectively, classifying the incidence of gill alterations as slightly to moderate. The severity of alteration of individual fish of treatment 0, 10 and 20% LBC ranged values from 5 to 40 (HAI average of 20.1, 17.5 and 17.6, respectively, P > 0.05), and differs from 30% LBC, that ranged from 6 to 129 (HAI mean of 77.2, P < 0.05). The HAI value in the treatments 0, 10 and 20% LBC reveals gill tissue with injuries classified from slightly to moderate, while in 30% LBC moderate to severe, consequence of the onset of necrosis in the tissue of two fish that compromises the normal functioning of the organ. In relation to frequency of gill alterations, evaluated according to absence of alterations (0) to highly frequent (+++), histological alterations were observed in all evaluated fish, with a trend of higher frequency in 0% LBC. The concentration of Na+, Cl-, K+ and Ca2+ did not changed in all treatments (P > 0.05), indicating similar capacity of ion exchange. The concentrations of bovine colostrum used in diets of present study did not impair the alterations observed in the gills of juvenile pacu.

Keywords: histological alterations of gill tissue, ionic status, lyophilized bovine colostrum, optical microscopy

Procedia PDF Downloads 300
460 Integrative-Cyclical Approach to the Study of Quality Control of Resource Saving by the Use of Innovation Factors

Authors: Anatoliy A. Alabugin, Nikolay K. Topuzov, Sergei V. Aliukov

Abstract:

It is well known, that while we do a quantitative evaluation of the quality control of some economic processes (in particular, resource saving) with help innovation factors, there are three groups of problems: high uncertainty of indicators of the quality management, their considerable ambiguity, and high costs to provide a large-scale research. These problems are defined by the use of contradictory objectives of enhancing of the quality control in accordance with innovation factors and preservation of economic stability of the enterprise. The most acutely, such factors are felt in the countries lagging behind developed economies of the world according to criteria of innovativeness and effectiveness of management of the resource saving. In our opinion, the following two methods for reconciling of the above-mentioned objectives and reducing of conflictness of the problems are to solve this task most effectively: 1) the use of paradigms and concepts of evolutionary improvement of quality of resource-saving management in the cycle "from the project of an innovative product (technology) - to its commercialization and update parameters of customer value"; 2) the application of the so-called integrative-cyclical approach which consistent with complexity and type of the concept, to studies allowing to get quantitative assessment of the stages of achieving of the consistency of these objectives (from baseline of imbalance, their compromise to achievement of positive synergies). For implementation, the following mathematical tools are included in the integrative-cyclical approach: index-factor analysis (to identify the most relevant factors); regression analysis of relationship between the quality control and the factors; the use of results of the analysis in the model of fuzzy sets (to adjust the feature space); method of non-parametric statistics (for a decision on the completion or repetition of the cycle in the approach in depending on the focus and the closeness of the connection of indicator ranks of disbalance of purposes). The repetition is performed after partial substitution of technical and technological factors ("hard") by management factors ("soft") in accordance with our proposed methodology. Testing of the proposed approach has shown that in comparison with the world practice there are opportunities to improve the quality of resource-saving management using innovation factors. We believe that the implementation of this promising research, to provide consistent management decisions for reducing the severity of the above-mentioned contradictions and increasing the validity of the choice of resource-development strategies in terms of parameters of quality management and sustainability of enterprise, is perspective. Our existing experience in the field of quality resource-saving management and the achieved level of scientific competence of the authors allow us to hope that the use of the integrative-cyclical approach to the study and evaluation of the resulting and factor indicators will help raise the level of resource-saving characteristics up to the value existing in the developed economies of post-industrial type.

Keywords: integrative-cyclical approach, quality control, evaluation, innovation factors. economic sustainability, innovation cycle of management, disbalance of goals of development

Procedia PDF Downloads 247
459 Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: I. Derek Kaka’an, P. Smolianov, D. Koh Choon Lian, S. Dion, C. Schoen, J. Norberg

Abstract:

This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.

Keywords: football, high performance, mass participation, Nigeria, sport development

Procedia PDF Downloads 254
458 Consumer Utility Analysis of Halal Certification on Beef Using Discrete Choice Experiment: A Case Study in the Netherlands

Authors: Rosa Amalia Safitri, Ine van der Fels-Klerx, Henk Hogeveen

Abstract:

Halal is a dietary law observed by people following Islamic faith. It is considered as a type of credence food quality which cannot be easily assured by consumers even upon and after consumption. Therefore, Halal certification takes place as a practical tool for the consumers to make an informed choice particularly in a non-Muslim majority country, including the Netherlands. Discrete choice experiment (DCE) was employed in this study for its ability to assess the importance of attributes attached to Halal beef in the Dutch market and to investigate consumer utilities. Furthermore, willingness to pay (WTP) for the desired Halal certification was estimated. Four most relevant attributes were selected, i.e., the slaughter method, traceability information, place of purchase, and Halal certification. Price was incorporated as an attribute to allow estimation of willingness to pay for Halal certification. There were 242 Muslim respondents who regularly consumed Halal beef completed the survey, from Dutch (53%) and non-Dutch consumers living in the Netherlands (47%). The vast majority of the respondents (95%) were within the age of 18-45 years old, with the largest group being student (43%) followed by employee (30%) and housewife (12%). Majority of the respondents (76%) had disposable monthly income less than € 2,500, while the rest earned more than € 2,500. The respondents assessed themselves of having good knowledge of the studied attributes, except for traceability information with 62% of the respondents considered themselves not knowledgeable. The findings indicated that slaughter method was valued as the most important attribute, followed by Halal certificate, place of purchase, price, and traceability information. This order of importance varied across sociodemographic variables, except for the slaughter method. Both Dutch and non-Dutch subgroups valued Halal certification as the third most important attributes. However, non-Dutch respondents valued it with higher importance (0,20) than their Dutch counterparts (0,16). For non-Dutch, the price was more important than Halal certification. The ideal product preferred by the consumers indicated the product serving the highest utilities for consumers, and characterized by beef obtained without pre-slaughtering stunning, with traceability info, available at Halal store, certified by an official certifier, and sold at 2.75 € per 500 gr. In general, an official Halal certifier was mostly preferred. However, consumers were not willing to pay for premium for any type of Halal certifiers, indicated by negative WTP of -0.73 €, -0.93 €, and -1,03€ for small, official, and international certifiers, respectively. This finding indicated that consumers tend to lose their utility when confronted with price. WTP estimates differ across socio-demographic variables with male and non-Dutch respondents had the lowest WTP. The unfamiliarity to traceability information might cause respondents to perceive it as the least important attribute. In the context of Halal certified meat, adding traceability information into meat packaging can serve two functions, first consumers can justify for themselves whether the processes comply with Halal requirements, for example, the use of pre-slaughtering stunning, and secondly to assure its safety. Therefore, integrating traceability info into meat packaging can help to make informed decision for both Halal status and food safety.

Keywords: consumer utilities, discrete choice experiments, Halal certification, willingness to pay

Procedia PDF Downloads 131
457 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 231
456 Treatment with Triton-X 100: An Enhancement Approach for Cardboard Bioprocessing

Authors: Ahlam Said Al Azkawi, Nallusamy Sivakumar, Saif Nasser Al Bahri

Abstract:

Diverse approaches and pathways are under development with the determination to develop cellulosic biofuels and other bio-products eventually at commercial scale in “bio-refineries”; however, the key challenge is mainly the high level of complexity in processing the feedstock which is complicated and energy consuming. To overcome the complications in utilizing the naturally occurring lignocellulose biomass, using waste paper as a feedstock for bio-production may solve the problem. Besides being abundant and cheap, bioprocessing of waste paper has evolved in response to the public concern from rising landfill cost from shrinking landfill capacity. Cardboard (CB) is one of the major components of municipal solid waste and one of the most important items to recycle. Although 50-70% of cardboard constitute is known to be cellulose and hemicellulose, the presence of lignin around them cause hydrophobic cross-link which physically obstructs the hydrolysis by rendering it resistant to enzymatic cleavage. Therefore, pretreatment is required to disrupt this resistance and to enhance the exposure of the targeted carbohydrates to the hydrolytic enzymes. Several pretreatment approaches have been explored, and the best ones would be those can influence cellulose conversion rates and hydrolytic enzyme performance with minimal or less cost and downstream processes. One of the promising strategies in this field is the application of surfactants, especially non-ionic surfactants. In this study, triton-X 100 was used as surfactants to treat cardboard prior enzymatic hydrolysis and compare it with acid treatment using 0.1% H2SO4. The effect of the surfactant enhancement was evaluated through its effect on hydrolysis rate in respect to time in addition to evaluating the structural changes and modification by scanning electron microscope (SEM) and X-ray diffraction (XRD) and through compositional analysis. Further work was performed to produce ethanol from CB treated with triton-X 100 via separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The hydrolysis studies have demonstrated enhancement in saccharification by 35%. After 72 h of hydrolysis, a saccharification rate of 98% was achieved from CB enhanced with triton-X 100, while only 89 of saccharification achieved from acid pre-treated CB. At 120 h, the saccharification % exceeded 100 as reducing sugars continued to increase with time. This enhancement was not supported by any significant changes in the cardboard content as the cellulose, hemicellulose and lignin content remained same after treatment, but obvious structural changes were observed through SEM images. The cellulose fibers were clearly exposed with very less debris and deposits compared to cardboard without triton-X 100. The XRD pattern has also revealed the ability of the surfactant in removing calcium carbonate, a filler found in waste paper known to have negative effect on enzymatic hydrolysis. The cellulose crystallinity without surfactant was 73.18% and reduced to 66.68% rendering it more amorphous and susceptible to enzymatic attack. Triton-X 100 has proved to effectively enhance CB hydrolysis and eventually had positive effect on the ethanol yield via SSF. Treating cardboard with only triton-X 100 was a sufficient treatment to enhance the enzymatic hydrolysis and ethanol production.

Keywords: cardboard, enhancement, ethanol, hydrolysis, treatment, Triton-X 100

Procedia PDF Downloads 153
455 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles

Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan

Abstract:

Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.

Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity

Procedia PDF Downloads 69
454 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease

Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller

Abstract:

Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.

Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics

Procedia PDF Downloads 76
453 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 165
452 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 399
451 A 4-Month Low-carb Nutrition Intervention Study Aimed to Demonstrate the Significance of Addressing Insulin Resistance in 2 Subjects with Type-2 Diabetes for Better Management

Authors: Shashikant Iyengar, Jasmeet Kaur, Anup Singh, Arun Kumar, Ira Sahay

Abstract:

Insulin resistance (IR) is a condition that occurs when cells in the body become less responsive to insulin, leading to higher levels of both insulin and glucose in the blood. This condition is linked to metabolic syndromes, including diabetes. It is crucial to address IR promptly after diagnosis to prevent long-term complications associated with high insulin and high blood glucose. This four-month case study highlights the importance of treating the underlying condition to manage diabetes effectively. Insulin is essential for regulating blood sugar levels by facilitating the uptake of glucose into cells for energy or storage. In IR individuals, cells are less efficient at taking up glucose from the blood resulting in elevated blood glucose levels. As a result of IR, beta cells produce more insulin to make up for the body's inability to use insulin effectively. This leads to high insulin levels, a condition known as hyperinsulinemia, which further impairs glucose metabolism and can contribute to various chronic diseases. In addition to regulating blood glucose, insulin has anti-catabolic effects, preventing the breakdown of molecules in the body, such as inhibiting glycogen breakdown in the liver, inhibiting gluconeogenesis, and inhibiting lipolysis. If a person is insulin-sensitive or metabolically healthy, an optimal level of insulin prevents fat cells from releasing fat and promotes the storage of glucose and fat in the body. Thus optimal insulin levels are crucial for maintaining energy balance and plays a key role in metabolic processes. During the four-month study, researchers looked at the impact of a low-carb dietary (LCD) intervention on two male individuals (A & B) who had Type-2 diabetes. Althoughvneither of these individuals were obese, they were both slightly overweight and had abdominal fat deposits. Before the trial began, important markers such as fasting blood glucose (FBG), triglycerides (TG), high-density lipoprotein (HDL) cholesterol, and Hba1c were measured. These markers are essential in defining metabolic health, their individual values and variability are integral in deciphering metabolic health. The ratio of TG to HDL is used as a surrogate marker for IR. This ratio has a high correlation with the prevalence of metabolic syndrome and with IR itself. It is a convenient measure because it can be calculated from a standard lipid profile and does not require more complex tests. In this four-month trial, an improvement in insulin sensitivity was observed through the ratio of TG/HDL, which, in turn, improves fasting blood glucose levels and HbA1c. For subject A, HbA1c dropped from 13 to 6.28, and for subject B, it dropped from 9.4 to 5.7. During the trial, neither of the subjects were taking any diabetic medications. The significant improvements in their health markers, such as better glucose control, along with an increase in energy levels, demonstrate that incorporating LCD interventions can effectively manage diabetes.

Keywords: metabolic disorder, insulin resistance, type-2 diabetes, low-carb nutrition

Procedia PDF Downloads 51
450 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 51
449 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 92
448 Highly Selective Phosgene Free Synthesis of Methylphenylcarbamate from Aniline and Dimethyl Carbonate over Heterogeneous Catalyst

Authors: Nayana T. Nivangune, Vivek V. Ranade, Ashutosh A. Kelkar

Abstract:

Organic carbamates are versatile compounds widely employed as pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics and in the synthesis of polyurethanes. Carbamates can be easily transformed into isocyanates by thermal cracking. Isocyantes are used as precursors for manufacturing agrochemicals, adhesives and polyurethane elastomers. Manufacture of polyurethane foams is a major application of aromatic ioscyanates and in 2007 the global consumption of polyurethane was about 12 million metric tons/year and the average annual growth rate was about 5%. Presently Isocyanates/carbamates are manufactured by phosgene based process. However, because of high toxicity of phoegene and formation of waste products in large quantity; there is a need to develop alternative and safer process for the synthesis of isocyanates/carbamates. Recently many alternative processes have been investigated and carbamate synthesis by methoxycarbonylation of aromatic amines using dimethyl carbonate (DMC) as a green reagent has emerged as promising alternative route. In this reaction methanol is formed as a by-product, which can be converted to DMC either by oxidative carbonylation of methanol or by reacting with urea. Thus, the route based on DMC has a potential to provide atom efficient and safer route for the synthesis of carbamates from DMC and amines. Lot of work is being carried out on the development of catalysts for this reaction and homogeneous zinc salts were found to be good catalysts for the reaction. However, catalyst/product separation is challenging with these catalysts. There are few reports on the use of supported Zn catalysts; however, deactivation of the catalyst is the major problem with these catalysts. We wish to report here methoxycarbonylation of aniline to methylphenylcarbamate (MPC) using amino acid complexes of Zn as highly active and selective catalysts. The catalysts were characterized by XRD, IR, solid state NMR and XPS analysis. Methoxycarbonylation of aniline was carried out at 170 °C using 2.5 wt% of the catalyst to achieve >98% conversion of aniline with 97-99% selectivity to MPC as the product. Formation of N-methylated products in small quantity (1-2%) was also observed. Optimization of the reaction conditions was carried out using zinc-proline complex as the catalyst. Selectivity was strongly dependent on the temperature and aniline:DMC ratio used. At lower aniline:DMC ratio and at higher temperature, selectivity to MPC decreased (85-89% respectively) with the formation of N-methylaniline (NMA), N-methyl methylphenylcarbamate (MMPC) and N,N-dimethyl aniline (NNDMA) as by-products. Best results (98% aniline conversion with 99% selectivity to MPC in 4 h) were observed at 170oC and aniline:DMC ratio of 1:20. Catalyst stability was verified by carrying out recycle experiment. Methoxycarbonylation preceded smoothly with various amine derivatives indicating versatility of the catalyst. The catalyst is inexpensive and can be easily prepared from zinc salt and naturally occurring amino acids. The results are important and provide environmentally benign route for MPC synthesis with high activity and selectivity.

Keywords: aniline, heterogeneous catalyst, methoxycarbonylation, methylphenyl carbamate

Procedia PDF Downloads 276
447 Intermodal Strategies for Redistribution of Agrifood Products in the EU: The Case of Vegetable Supply Chain from Southeast of Spain

Authors: Juan C. Pérez-Mesa, Emilio Galdeano-Gómez, Jerónimo De Burgos-Jiménez, José F. Bienvenido-Bárcena, José F. Jiménez-Guerrero

Abstract:

Environmental cost and transport congestion on roads resulting from product distribution in Europe have to lead to the creation of various programs and studies seeking to reduce these negative impacts. In this regard, apart from other institutions, the European Commission (EC) has designed plans in recent years promoting a more sustainable transportation model in an attempt to ultimately shift traffic from the road to the sea by using intermodality to achieve a model rebalancing. This issue proves especially relevant in supply chains from peripheral areas of the continent, where the supply of certain agrifood products is high. In such cases, the most difficult challenge is managing perishable goods. This study focuses on new approaches that strengthen the modal shift, as well as the reduction of externalities. This problem is analyzed by attempting to promote intermodal system (truck and short sea shipping) for transport, taking as point of reference highly perishable products (vegetables) exported from southeast Spain, which is the leading supplier to Europe. Methodologically, this paper seeks to contribute to the literature by proposing a different and complementary approach to establish a comparison between intermodal and the “only road” alternative. For this purpose, the multicriteria decision is utilized in a p-median model (P-M) adapted to the transport of perishables and to a means of shipping selection problem, which must consider different variables: transit cost, including externalities, time, and frequency (including agile response time). This scheme avoids bias in decision-making processes. By observing the results, it can be seen that the influence of the externalities as drivers of the modal shift is reduced when transit time is introduced as a decision variable. These findings confirm that the general strategies, those of the EC, based on environmental benefits lose their capacity for implementation when they are applied to complex circumstances. In general, the different estimations reveal that, in the case of perishables, intermodality would be a secondary and viable option only for very specific destinations (for example, Hamburg and nearby locations, the area of influence of London, Paris, and the Netherlands). Based on this framework, the general outlook on this subject should be modified. Perhaps the government should promote specific business strategies based on new trends in the supply chain, not only on the reduction of externalities, and find new approaches that strengthen the modal shift. A possible option is to redefine ports, conceptualizing them as digitalized redistribution and coordination centers and not only as areas of cargo exchange.

Keywords: environmental externalities, intermodal transport, perishable food, transit time

Procedia PDF Downloads 98
446 Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma

Authors: Jan Masak, Eva Kvasnickova, Vladimir Scholtz, Olga Matatkova, Marketa Valkova, Alena Cejkova

Abstract:

Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%.

Keywords: anti-biofilm activity, antibiotic, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 184
445 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency

Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar

Abstract:

In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.

Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index

Procedia PDF Downloads 30
444 Unfolding Architectural Assemblages: Mapping Contemporary Spatial Objects' Affective Capacity

Authors: Panagiotis Roupas, Yota Passia

Abstract:

This paper aims at establishing an index of design mechanisms - immanent in spatial objects - based on the affective capacity of their material formations. While spatial objects (design objects, buildings, urban configurations, etc.) are regarded as systems composed of interacting parts, within the premises of assemblage theory, their ability to affect and to be affected has not yet been mapped or sufficiently explored. This ability lies in excess, a latent potentiality they contain, not transcendental but immanent in their pre-subjective aesthetic power. As spatial structures are theorized as assemblages - composed of heterogeneous elements that enter into relations with one another - and since all assemblages are parts of larger assemblages, their components' ability to engage is contingent. We thus seek to unfold the mechanisms inherent in spatial objects that allow to the constituent parts of design assemblages to perpetually enter into new assemblages. To map architectural assemblage's affective ability, spatial objects are analyzed in two axes. The first axis focuses on the relations that the assemblage's material and expressive components develop in order to enter the assemblages. Material components refer to those material elements that an assemblage requires in order to exist, while expressive components includes non-linguistic (sense impressions) as well as linguistic (beliefs). The second axis records the processes known as a-signifying signs or a-signs, which are the triggering mechanisms able to territorialize or deterritorialize, stabilize or destabilize the assemblage and thus allow it to assemble anew. As a-signs cannot be isolated from matter, we point to their resulting effects, which without entering the linguistic level they are expressed in terms of intensity fields: modulations, movements, speeds, rhythms, spasms, etc. They belong to a molecular level where they operate in the pre-subjective world of perceptions, effects, drives, and emotions. A-signs have been introduced as intensities that transform the object beyond meaning, beyond fixed or known cognitive procedures. To that end, from an archive of more than 100 spatial objects by contemporary architects and designers, we have created an effective mechanisms index is created, where each a-sign is now connected with the list of effects it triggers and which thoroughly defines it. And vice versa, the same effect can be triggered by different a-signs, allowing the design object to lie in a perpetual state of becoming. To define spatial objects, A-signs are categorized in terms of their aesthetic power to affect and to be affected on the basis of the general categories of form, structure and surface. Thus, different part's degree of contingency are evaluated and measured and finally, we introduce as material information that is immanent in the spatial object while at the same time they confer no meaning; they only convey some information without semantic content. Through this index, we are able to analyze and direct the final form of the spatial object while at the same time establishing the mechanism to measure its continuous transformation.

Keywords: affective mechanisms index, architectural assemblages, a-signifying signs, cartography, virtual

Procedia PDF Downloads 130
443 On the Road towards Effective Administrative Justice in Macedonia, Albania and Kosovo: Common Challenges and Problems

Authors: Arlinda Memetaj

Abstract:

A sound system of administrative justice represents a vital element of democratic governance. The proper control of public administration consists not only of a sound civil service framework and legislative oversight, but empowerment of the public and courts to hold public officials accountable for their decision-making through the application of fair administrative procedural rules and the use of appropriate administrative appeals processes and judicial review. The establishment of both effective public administration and administrative justice system has been for a long period of time among the most ‘important and urgent’ final strategic objectives of almost any country in the Balkans region, including Macedonia, Albania and Kosovo. Closely related to this is their common strategic goal to enter the membership in the European Union, which requires fulfilling of many criteria and standards as incorporated in EU acquis communautaire. The latter is presently done with the framework of the Stabilization and Association Agreement which each of these countries has concluded with the EU accordingly. To above aims, each of the three countries has so far adopted a huge series of legislative and strategic documents related to any aspects of their individual administrative justice system. ‘Changes and reforms’ in this field have been thus the most frequent terms being used in any of these countries. The three countries have already established their own national administrative judiciary, while permanently amending their laws on the general administrative procedure introducing thereby considerable innovations concerned. National administrative courts are expected to have crucial important role within the broader judiciary systems-related reforms of these countries; they are designed to check the legality of decisions of the state administration with the aim to guarantee an effective protection of human rights and legitimate interests of private persons through a regular, conform, fast and reasonable judicial administrative process. Further improvements in this field are presently an integral crucial part of all the relevant national strategic documents including the ones on judiciary reform and public administration reform, as adopted by each of the three countries; those strategic documents are designed among others to provide effective protection of their citizens` rights` of administrative justice. On the basis of the later, the paper finally is aimed at highlighting selective common challenges and problems of the three countries on their European road, while claiming (among others) that the current status quo situation in each of them may be overcome only if there is a proper implementation of the administrative courts decisions and a far stricter international monitoring process thereof. A new approach and strong political commitment from the highest political leadership is thus absolutely needed to ensure the principles of transparency, accountability and merit in public administration. The main methods used in this paper include the analytical and comparative ones due to the very character of the paper itself.

Keywords: administrative courts , administrative justice, administrative procedure, benefit, effective administrative justice, human rights, implementation, monitoring, reform

Procedia PDF Downloads 154
442 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 143
441 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 260
440 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 178