Search results for: water yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10336

Search results for: water yield

4936 Aqueous Two Phase Extraction of Jonesia denitrificans Xylanase 6 in PEG 1000/Phosphate System

Authors: Nawel Boucherba, Azzedine Bettache, Abdelaziz Messis, Francis Duchiron, Said Benallaoua

Abstract:

The impetus for research in the field of bioseparation has been sparked by the difficulty and complexity in the downstream processing of biological products. Indeed, 50% to 90% of the production cost for a typical biological product resides in the purification strategy. There is a need for efficient and economical large scale bioseparation techniques which will achieve high purity and high recovery while maintaining the biological activity of the molecule. One such purification technique which meets these criteria involves the partitioning of biomolecules between two immiscible phases in an aqueous system (ATPS). The Production of xylanases is carried out in 500ml of a liquid medium based on birchwood xylan. In each ATPS, PEG 1000 is added to a mixture consisting of dipotassium phosphate, sodium chloride and the culture medium inoculated with the strain Jonesia denitrificans, the mixture was adjusted to different pH. The concentration of PEG 1000 was varied: 8 to 16 % and the NaCl percentages are also varied from 2 to 4% while maintaining the other parameters constant. The results showed that the best ATPS for purification of xylanases is composed of PEG 1000 at 8.33%, 13.14 % of K2HPO4, 1.62% NaCl at pH 7. We obtained a yield of 96.62 %, a partition coefficient of 86.66 and a purification factor of 2.9. The zymogram showed that the activity is mainly detected in the top phase.

Keywords: Jonesia denitrificans BN13, xylanase, aqueous two phases system, zymogram

Procedia PDF Downloads 389
4935 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study

Authors: Qudama Albu-Jasim, Majdi Kanaan

Abstract:

A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.

Keywords: load rating, CSIBridge, strengthening, uncertainties, case study

Procedia PDF Downloads 201
4934 Effectiveness of the Bundle Care to Relieve the Thirst for Intensive Care Unit Patients: Meta-Analysis

Authors: Wen Hsin Hsu, Pin Lin

Abstract:

Objective: Thirst discomfort is the most common yet often overlooked symptom in patients in the intensive care unit (ICU), with an incidence rate of 69.8%. If not properly cared for, it can easily lead to irritability, affect sleep quality, and increase the incidence of delirium, thereby extending the length of hospital stay. Research points out that the sensation of coldness is an effective strategy to alleviate thirst. Using a combined care approach for thirst can prolong the sensation of coldness in the mouth and reduce thirst discomfort. Therefore, it needs to be further analyzed and its effectiveness reviewed. Methods: This study uses systematic literature review and meta-analysis methodologies and searched databases including PubMed, MEDLINE, EMBASE, Cochrane, CINAHL, and two Chinese databases (CEPS and CJTD) based on keywords. JBI was used to appraise the quality of the literature. RevMen 5.4 software package was used, and Fix Effect Model was applied for data analysis. We selected experimental articles, including those in English and Chinese, that met the inclusion and exclusion criteria. Three research articles were included in total, with a sample size of 416 people. Two were randomized controlled trials, and one was a quasi-experimental design. Results: The results show that the combined care for thirst, which includes ice water spray or oral swab wipes, menthol mouthwash, and lip balm, can significantly relieve thirst intensity MD=-1.36 (3 studies, 95% CI (-1.77, -0.95), p <0.001) and thirst distress MD=-0.71 (2 studies, 95% CI (-1.32, -0.10), p =0.02). Therefore, it is recommended that medical staff identify high-risk groups for thirst early on. Implications for Practice: For patients who cannot eat orally, providing combined care for thirst can increase oral comfort and improve the quality of care.

Keywords: thirst bundle care, intensive care units, meta-analysis, ice water spray, menthol

Procedia PDF Downloads 52
4933 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 155
4932 Synthesis of Biopolymeric Nanoparticles of Starch for Packaging Reinforcement Applications

Authors: Yousof Farrag, Sara Malmir, Rebeca Bouza, Maite Rico, Belén Montero, Luís Barral

Abstract:

Biopolymers are being extensively studied in the last years as a replacement of the conventional petroleum derived polymers, especially in packaging industry. They are natural, biodegradable materials. However, the lack of good mechanical and barrier properties is a problem in the way of this replacement. One of the most abundant biopolymers in the nature is the starch, its renewable, biocompatible low cost polysaccharide, it can be obtained from wide variety of plants, it has been used in food, packaging and other industries. This work is focusing on the production a high yield of starch nanoparticles via nanoprecipitation, to be used as reinforcement filling of biopolymer packaging matrices made of different types of starch improving their mechanical and barrier properties. Wheat and corn starch solutions were prepared in different concentrations. Absolute ethanol, acetone and different concentrations of hydrochloric acid were added as antisolvents dropwise under different amplitudes of sonication and different speeds of stirring, the produced particles were analyzed with dynamic light scattering DLS and scanning electron microscope SEM getting the morphology and the size distribution to study the effect of those factors on the produced particles. DLS results show that we have nanoparticles using low concentration of corn starch (0.5%) using 0.1M HCl as antisolvent, [Z average: 209 nm, PDI: 0,49], in case of wheat starch, we could obtain nanoparticles [Z average: 159 nm, PDI: 0,45] using the same starch solution concentration together with absolute ethanol as antisolvent.

Keywords: biopolymers, nanoparticles, DLS, starch

Procedia PDF Downloads 316
4931 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide

Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto

Abstract:

It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.

Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond

Procedia PDF Downloads 204
4930 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density

Procedia PDF Downloads 114
4929 Occurence And Management Of Coliform Bacteria On Tomatoes

Authors: Cho Achidi

Abstract:

Tomato is a crucial food crop significantly contributes to global food and nutrition security. However, postharvest losses severely limit its role. Therefore, it is necessary to develop sustainable strategies to minimize these losses and improve the shelf-life of tomato fruits. One of the major concerns is bacterial infections, particularly by faecal coliform bacteria, which can cause food poisoning and illnesses like diarrhoea and dysentery. This study seeks to identify the presence of coliform bacteria on tomato fruits in fields and markets in Muea, Buea Municipality. The study also evaluated different management strategies to reduce the bacterial incidence and load on tomato fruits. A total of 200 fruits were sampled for both the coliform survey and shelf-life analysis. Ten farmers and traders provided samples, including asymptomatic and symptomatic tomato fruits. The samples designated for shelf-life analysis were treated with Aquatab, warm water, lemon, and onion. The results indicated that out of the 80 symptomatic samples collected, 12.5% contained faecal and total coliform species. Among the ten farms sampled, 14% were infected with coliform bacteria, with the highest infestation rate of 60% recorded in field 4. Furthermore, 15% of the asymptomatic tomato fruits were found to be infected by coliform bacteria. Regarding the management strategies, Aquatabs exhibited the highest efficacy in reducing the incidence of coliform bacteria on tomato fruits, followed by onion and lemon extracts. Although hot water treatment effectively removed bacteria from the fruits, damaging the cell wall negatively affected their shelf-life. Overall, this study emphasizes the severity of coliform bacterial pathogens in the Muea area, particularly their occurrence on asymptomatic tomatoes, which poses a significant concern for plant quarantine services. It also demonstrates potential options for mitigating this bacterial challenge.

Keywords: tomato, shelf-life analysis, food and nutrition security, coliform bbacteria

Procedia PDF Downloads 58
4928 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 144
4927 Zirconium Oxide Nanoparticles as an Efficient Catalyst for Three-Component Synthesis of Benzylamino Coumarin Derivatives

Authors: Hossein Anaraki-Ardakani

Abstract:

A green and efficient one-pot synthesis of benzylamino coumarin derivatives by a three-component condensation of 4-hydroxycoumarin, cyclic secondary amine, and aromatic aldehyde in the presence of ZrO2 nanoparticles (NPs) as a heterogeneous catalyst in water at room temperature has been reported.

Keywords: 3-benzyl substituted coumarin derivative, ZrO2 nanoparticles (NPs), green synthesis, multicomponent reaction

Procedia PDF Downloads 356
4926 Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo

Authors: Getamesay Kassaye Dimru

Abstract:

The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households.

Keywords: degradation, fruit, irrigation, pest

Procedia PDF Downloads 212
4925 Biofertilization of Cucumber (Cucumis sativus L.) Using Trichoderma longibrachiatum

Authors: Kehinde T. Kareem

Abstract:

The need to increase the production of cucumber has led to the use of inorganic fertilizers. This chemical affects the ecological balance of nature by increasing the nitrogen and phosphorus contents of the soil. Surface runoffs into rivers and streams cause eutrophication which affects aquatic organisms as well as the consumers of aquatic animals. Therefore, this study was carried out in the screenhouse to investigate the use of a plant growth-promoting fungus; Trichoderma longibrachiatum for the growth promotion of conventional and in-vitro propagated Ashley and Marketmoor cucumber. Before planting of cucumber, spore suspension (108 cfu/ml) of Trichoderma longibrachiatum grown on Potato dextrose agar (PDA) was inoculated into the soil. Fruits were evaluated for the presence of Trichoderma longibrachiatum using a species-specific primer. Results revealed that the highest significant plant height produced by in-vitro propagated Ashley was 19 cm while the highest plant height of in-vitro propagated Marketmoor was 19.67 cm. The yield of the conventional propagated Ashley cucumber showed that the number of fruit/plant obtained from T. longibrachiatum-fertilized plants were significantly more than those of the control. The in-vitro Ashely had 7 fruits/plant while the control produced 4 fruits/plant. In-vitro Marketmoor had ten fruits/plant, and the control had a value of 4 fruits/plant. There were no traces of Trichoderma longibrachiatum genes in the harvested cucumber fruits. Therefore, the use of Trichoderma longibrachiatum as a plant growth-promoter is safe for human health as well as the environment.

Keywords: biofertilizer, cucumber, genes, growth-promoter, in-vitro, propagation

Procedia PDF Downloads 225
4924 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 76
4923 HydroParks: Directives for Physical Environment Interventions Battling Childhood Overweight in Berlin, Germany

Authors: Alvaro Valera Sosa

Abstract:

Background: In recent years, childhood overweight and obesity have become an increasing and challenging phenomenon in Berlin and Germany in general. The highest shares of childhood overweight in Berlin are district localities within the inner city ring with lowest socio-economic levels and the highest number of migration background populations. Most factors explaining overweight and obesity are linked to individual dispositions and nutrition balances. Among various strategies, to target drinking behaviors of children and adolescents has been proven to be effective. On the one hand, encouraging the intake of water – which does not contain energy and thus may support a healthy weight status – on the other hand, reducing the consumption of sugar-containing beverages – which are linked to weight gain and obesity. Anyhow, these preventive approaches have mostly developed into individual or educational interventions widely neglecting environmental modifications. Therefore, little is known on how urban physical environment patterns and features can act as influence factors for childhood overweight. Aiming the development of a physical environment intervention tackling children overweight, this study evaluated urban situations surrounding public playgrounds in Berlin where the issue is evident. It verified the presence and state of physical environmental conditions that can be conducive for children to engage physical activity and water intake. Methods: The study included public playgrounds for children from 0-12 y/o within district localities with the highest prevalence of childhood overweight, highest population density, and highest mixed uses. A systematic observation was realized to describe physical environment patterns and features that may affect children health behavior leading to overweight. Neighborhood walkability for all age groups was assessed using the Walkability for Health framework (TU-Berlin). Playground physical environment conditions were evaluated using Active Living Research assessment sheets. Finally, the food environment in the playground’s pedestrian catchment areas was reviewed focusing on: proximity to suppliers offering sugar-containing beverages, and physical access for 5 y/o children and up to drinking water following the Drinking Fountains and Public Health guidelines of the Pacific Institute. Findings: Out of 114 locations, only 7 had a child population over 3.000. Three with the lowest socio-economic index and highest percentage of migration background were selected. All three urban situations presented similar walkability: large trafficked avenues without buffer bordering at least one side of the playground, and important block to block disconnections for active travel. All three playgrounds rated equipment conditions from good to very good. None had water fountains at the reach of a 5 y/o. and all presented convenience stores and/or fast food outlets selling sugar-containing beverages nearby the perimeter. Conclusion: The three playground situations selected are representative of Berlin locations where most factors that influence children overweight are found. The results delivered urban and architectural design directives for an environmental intervention, used to study children health-related behavior. A post-intervention evaluation could prove associations between designed spaces and children overweight rate reduction creating a precedent in public health interventions and providing novel strategies for the health sector.

Keywords: children overweight, evaluation research, public playgrounds, urban design, urban health

Procedia PDF Downloads 146
4922 Empowering Certificate Management with Blockchain Technology

Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware

Abstract:

The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.

Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker

Procedia PDF Downloads 34
4921 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application

Authors: Wided Zerguine, Farid Habelhames

Abstract:

The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.

Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide

Procedia PDF Downloads 314
4920 Recreation and Environmental Quality of Tropical Wetlands: A Social Media Based Spatial Analysis

Authors: Michael Sinclair, Andrea Ghermandi, Sheela A. Moses, Joseph Sabu

Abstract:

Passively crowdsourced data, such as geotagged photographs from social media, represent an opportunistic source of location-based and time-specific behavioral data for ecosystem services analysis. Such data have innovative applications for environmental management and protection, which are replicable at wide spatial scales and in the context of both developed and developing countries. Here we test one such innovation, based on the analysis of the metadata of online geotagged photographs, to investigate the provision of recreational services by the entire network of wetland ecosystems in the state of Kerala, India. We estimate visitation to individual wetlands state-wide and extend, for the first time to a developing region, the emerging application of cultural ecosystem services modelling using data from social media. The impacts of restoration of wetland areal extension and water quality improvement are explored as a means to inform more sustainable management strategies. Findings show that improving water quality to a level suitable for the preservation of wildlife and fisheries could increase annual visits by 350,000, an increase of 13% in wetland visits state-wide, while restoring previously encroached wetland area could result in a 7% increase in annual visits, corresponding to 49,000 visitors, in the Ashtamudi and Vembanad lakes alone, two large coastal Ramsar wetlands in Kerala. We discuss how passive crowdsourcing of social media data has the potential to improve current ecosystem service analyses and environmental management practices also in the context of developing countries.

Keywords: coastal wetlands, cultural ecosystem services, India, passive crowdsourcing, social media, wetland restoration

Procedia PDF Downloads 142
4919 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 394
4918 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: current deflecting wall, eddies, hydraulic model, macro tide, siltation

Procedia PDF Downloads 283
4917 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling

Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere

Abstract:

In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.

Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows

Procedia PDF Downloads 301
4916 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging

Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li

Abstract:

Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.

Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging

Procedia PDF Downloads 152
4915 The Effects of Future Priming on Resource Concern

Authors: Calvin Rong, Regina Agassian, Mindy Engle-Friedman

Abstract:

Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment.

Keywords: climate change, future, priming, global warming

Procedia PDF Downloads 236
4914 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape

Authors: Ombir Singh

Abstract:

In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.

Keywords: conservation, Ganga, river, water, forestry interventions

Procedia PDF Downloads 141
4913 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 86
4912 Nutraceutical Characterization of Optimized Shatavari Asparagus racemosus Willd (Asparagaceae) Low Alcohol Nutra Beverage

Authors: Divya Choudhary, Hariprasad P., S. N. Naik

Abstract:

This study examines a low-alcohol nutra-beverage made with shatavari, a plant commonly used in traditional medicine. During fermentation, the addition of a specific strain of yeast affected the beverage's properties, including its pH level, yeast count, ethanol content, and antioxidant, phenolic, and flavonoid levels. We also analyzed the beverage's storage and shelf life. Despite its bitter taste, the low alcohol content of the beverage made it enjoyable to drink and visually appealing. Our analysis showed that the optimal time for fermentation was between the 14th and 21st day when the beverage had ideal levels of sugar, organic acids, and vitamins. The final product contained fructose and citric acid but not succinic, pyruvic, lactic, or acetic acids. It also contained vitamins B2, B1, B12, and B9. During the shelf life analysis, we observed changes in the beverage's pH, TSS, and cfu levels, as well as its antioxidant activity. We also identified volatile (GC-MS) and non-volatile compounds (LC-MS/MS) in the fermented product, some of which were already present in the Shatavari root. The highest yield of product contained the maximum concentration of antioxidant compounds, which depended on both the pH and the microorganisms' physiological status. Overall, our study provides insight into the properties and potential health benefits of this Nutra-beverage.

Keywords: antioxidants, fermentation, volatile compounds, acetonin, 1-butanol, non-volatile compounds, Shatavarin V, IX, kaempferol

Procedia PDF Downloads 52
4911 Effect of Probiotic (RE3) Supplement on Growth Performance, Diarrhea Incidence and Blood Parameters of N'dama Calves

Authors: Y. Abdul Aziz, E. L. K. Osafo, S. O. Apori, A. Osman

Abstract:

A sixteen week trial was conducted at the Research Farm (Technology Village) of the Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast, Ghana. This study sought to investigate the effects of Probiotic (RE3) on growth performance, diarrhea incidence and blood parameters of N’dama calves. Sixteen N’dama calves aged 3 months of an average initial weight of 44.2 kg were randomly assigned to one of four dietary treatments according to their body weight, age, and sex. Treatment 1 (T1) serve as a control animal (No RE3 supplementation). Treatment 2 (T2) receives 0.03 ml RE3 per kg body weight. Treatment 3 (T3) receives 0.06 ml RE3 per kg body weight, and Treatment 4 (T4) also receives 0.09 ml RE3 per kg body weight in a Completely Randomize Design (CRD). There were 4 replicates per treatment. The calves were allowed access to feed and water ad libitum. The body weight of the calves was recorded at the start of the experiment and thereafter regularly at two weeks interval. Weighing was done early morning before the calves are allowed to access feed and water and were also observed in their pens for occurrence of diarrhea and faecal scores recorded. Blood samples were obtained from each calf at the end of the study through jugular vein puncture. Supplementation of RE3 to calves had showed a beneficial effect by reducing the incidence of diarrhea. The highest faecal score was recorded in T1 and the least faecal score was recorded in T3. There was significant difference (P < 0.05) in the faecal score between the treatment group and the control after two weeks of the experiment. There was no significant difference (P > 0.05) in the average daily gain of the animals. Hematological and biochemical indices of calves were all within the normal range except in treatments (1, 3 and 4) which recorded high White Blood Cell (WBC) count with no significant difference (P > 0.05).

Keywords: probiotics (RE3), diarrhea incidence, blood parameters, N’dama calves

Procedia PDF Downloads 160
4910 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 113
4909 Esterification Reaction of Stearic Acid with Methanol Over Surface Functionalised PAN Fibrous Solid Acid Catalyst

Authors: Rawaz A. Ahmed, Katherine Huddersman

Abstract:

High-lipid Fats, Oils and Grease (FOGs) from wastewater are underutilized despite their potential for conversion into valuable fuels; this work describes a surface-functionalized fibrous Polyacrylonitrile (PAN) mesh as a novel heterogeneous acid catalyst for the conversion of free fatty acids (FFAs), via a catalytic esterification process into biodiesel. The esterification of stearic acid (SA) with methanol was studied over an acidified PAN solid acid catalyst. Disappearance of the carboxylic acid (C=O) peak of the stearic acid at 1696 cm-1 in the FT-IR spectrum with the associated appearance of the ester (C=O) peak at 1739 cm-1 confirmed the production of the methyl stearate. This was further supported by 1H NMR spectra with the appearance of the ester (-CH₂OCOR) at 3.60-3.70 ppm. Quantitate analysis by GC-FID showed the catalyst has excellent activity with >95 % yield of methyl stearate (MS) at 90 ◦C after 3 h and a molar ratio of methanol to SA of 35:1. To date, to our best knowledge, there is no research in the literature on the esterification reaction for biodiesel production using a modified PAN mesh as a catalyst. It is noteworthy that this acidified PAN mesh catalyst showed comparable activity to conventional Brönsted acids, namely H₂SO₄ and p-TSA, as well as exhibiting higher activity than various other heterogeneous catalysts such as zeolites, ion-exchange resins and acid clay.

Keywords: fats oil and greases (FOGs), free fatty acid, esterification reaction, methyl ester, PAN

Procedia PDF Downloads 217
4908 Effect of Different Types of Washes on the Fabric Strength of Denim

Authors: Hina Gul Rajpoot, Wazeer Hussain Solangi

Abstract:

Experimental Design (DOE) economically maximizes information; we deliberately change one or more process variables (looms) in order to observe the effect the changes have on one or more response fabric properties. In DOE obtained data can be analyzed to yield valid and objective conclusions. An Experimental Design is lying out of a detailed experimental plan in advance and maximizes the amount of "information" that can be obtained for a given amount of experimental. Fabric of 36 inches having following weaves was used. 3/1 twill, warp cotton (10.5 den), weft Lycra (16 spandex * 70 den) Ends per inch86, Picks per inch 52 and washes process includes Stone wash, Rinse wash, Bleaching and Enzyme wash. Once the samples were ready, they were subjected to tensile and tear strength tests, for these two kinds of samples were considered. One washed fabric samples of warp direction type and other type of the samples was weft direction. Then five samples from each were considered for tensile and teat strength tests separately then takes the mean value. The results found that the lowest strength damaged in the weft direction observed by tensile strength test & Enzyme wash. Maximum breaking load of the enzyme washed fabric sample was 42 kg.

Keywords: twill, indigo dye, tear strength, loom, ball warp, denier or den, seam, waist band, pilling, selvage

Procedia PDF Downloads 263
4907 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 103