Search results for: unsteady heat conduction
2832 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation
Authors: Md. S. Ansari, S. S. Motsa
Abstract:
In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation
Procedia PDF Downloads 3732831 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler
Authors: Damiaa Saad Khudor
Abstract:
The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.Keywords: fluidization, powder technology, thermal design, heat exchangers
Procedia PDF Downloads 5152830 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System
Authors: H. Mohit
Abstract:
In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science
Procedia PDF Downloads 2622829 Management Practices in Holding Pens in Pig’s Slaughterhouses in the Valle De Aburrá, Antioquia and Animal Welfare
Authors: Natalia Uribe Corrales, Santiago Henao Villegas
Abstract:
Introduction: The management of pigs in the holding pens at the slaughterhouses is a key point to minimize levels of stress and fear, improve efficiency, maintain a good quality of meat and avoid economic losses. Holding pens should guarantee drinking water continuously, a minimum space of 1.2 m2/ animal; As well as an adequate management in the conduction of the animals towards stun. Objective: To characterize the management practices in holding pens in slaughterhouses in the Valle de Aburrá. Methods: A descriptive cross - sectional study was carried out in Valle de Aburrá benefit plants, which were authorized by National Institute for Food and Medicine Surveillance (INVIMA). Variables such as management mechanisms to the pens, time of housing, water supply, load density, vocalization, slips and falls of the animals in the pens and mechanism of conduction towards desensitization were analyzed. Results: 225 pigs were analyzed, finding that 35.6% were lowered with slaps from the trucks to the waiting pens; The lairage time was greater than 10 hours in 16% of the animals; 12.9% of pigs had no water permanently; 40.9% was subjected to a high load density, while 19.6% had a low load density. Regarding aspects of animal welfare, 37.3% presented high vocalizations; 29.3% and 14.2% presented slips or falls respectively. Regarding the mechanism of conduction towards desensitization, slapping was used in 56% and electrical prod in 4%. Conclusions: It is necessary to continue promoting the learning of the densities of load, since both high and low densities generate inconveniences in animal welfare, favoring the appearance of lesions and stress in the animals. Also, to promote the rule of permanent water in the pens and a time of housing less than 10 hours. In relation to the driving mechanisms, it is necessary to continue animal husbandry campaigns, encouraging the use of other alternatives such as boards or panels to assist the movement of pigs.Keywords: animal welfare, quality of meat, swine, waiting pens
Procedia PDF Downloads 1972828 Experimental Analysis of Laminar Nanofluid Flow Convection
Authors: Mohammad R. Salimpour
Abstract:
In this study, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. Ee check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section.Keywords: nanofluid, cross-sectional shape, TiO2, convection
Procedia PDF Downloads 3922827 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favourable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.Keywords: thermophoresis, porous medium, variable surface heat flux, heat transfer
Procedia PDF Downloads 2032826 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
Authors: Ziya Uddin
Abstract:
This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer
Procedia PDF Downloads 3912825 Adsorption Cooling Using Hybrid Energy Resources
Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux
Abstract:
HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources
Procedia PDF Downloads 3612824 Experimental Investigation of Heat Transfer and Scale Growth Characteristics of Crystallisation Scale in Agitation Tank
Authors: Prasanjit Das, M .M. K. Khan, M. G. Rasul, Jie Wu, I. Youn
Abstract:
Crystallisation scale occurs when dissolved minerals precipitate from an aqueous solution. To investigate the crystallisation scale growth of normal solubility salt, a lab-scale agitation tank with and without baffles were used as a benchmark using potassium nitrate as the test fluid. Potassium nitrate (KNO3) solution in this test leads to crystallisation scale on heat transfer surfaces. This experimental investigation has focused on the effect of surface crystallisation of potassium nitrate on the low-temperature heat exchange surfaces on the wall of the agitation tank. The impeller agitation rate affects the scaling rate at the low-temperature agitation wall and it shows a decreasing scaling rate with an increasing agitation rate. It was observed that there was a significant variation of heat transfer coefficients and scaling resistance coefficients with different agitation rate as well as with varying impeller size, tank with and without baffles and solution concentration.Keywords: crystallisation, heat transfer coefficient, scale, resistance
Procedia PDF Downloads 1842823 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment
Procedia PDF Downloads 3652822 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach
Authors: Md. Asif Ullah, M. A. R. Sarkar
Abstract:
This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer
Procedia PDF Downloads 3612821 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages
Authors: Mohammad Taghi Karbalaei Aghamolki, Mohd Khanif Yusop, Fateh Chand Oad, Hamed Zakikhani, Hawa Zee Jaafar, Sharifh Kharidah, Mohamed Hanafi Musa, Shahram Soltani
Abstract:
The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage.Keywords: rice, growth, heat, temperature, stress, morphology, yield
Procedia PDF Downloads 2782820 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress
Authors: S. K. Thind, Aparjot Kaur
Abstract:
Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism
Procedia PDF Downloads 3272819 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France
Authors: Aiman Mazhar Qureshi, Ahmed Rachid
Abstract:
Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation
Procedia PDF Downloads 1512818 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 972817 Formulation and Evaluation of Mouth Dissolving Tablet of Ketorolac Tromethamine by Using Natural Superdisintegrants
Authors: J. P. Lavande, A. V.Chandewar
Abstract:
Mouth dissolving tablet is the speedily growing and highly accepted drug delivery system. This study was aimed at development of Ketorolac Tromethamine mouth dissolving tablet (MDTs), which can disintegrate or dissolve rapidly once placed in the mouth. Conventional Ketorolac tromethamine tablet requires water to swallow it and has limitation like low disintegration rate, low solubility etc. Ketorolac Tromethamine mouth dissolving tablets (formulation) consist of super-disintegrate like Heat Modified Karaya Gum, Co-treated Heat Modified Agar & Filler microcrystalline cellulose (MCC). The tablets were evaluated for weight variation, friability, hardness, in vitro disintegration time, wetting time, in vitro drug release profile, content uniformity. The obtained results showed that low weight variation, good hardness, acceptable friability, fast wetting time. Tablets in all batches disintegrated within 15-50 sec. The formulation containing superdisintegrants namely heat modified karaya gum and heat modified agar showed better performance in disintegration and drug release profile.Keywords: mouth dissolving tablet, Ketorolac tromethamine, disintegration time, heat modified karaya gum, co-treated heat modified agar
Procedia PDF Downloads 2832816 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method
Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert
Abstract:
The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics
Procedia PDF Downloads 2632815 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena
Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho
Abstract:
To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics
Procedia PDF Downloads 4852814 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer
Procedia PDF Downloads 2612813 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger
Authors: Appasaheb Raul
Abstract:
Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5
Procedia PDF Downloads 5262812 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 3752811 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy
Procedia PDF Downloads 2612810 Experimental Study on the Heating Characteristics of Transcritical CO₂ Heat Pumps
Authors: Lingxiao Yang, Xin Wang, Bo Xu, Zhenqian Chen
Abstract:
Due to its outstanding environmental performance, higher heating temperature and excellent low-temperature performance, transcritical carbon dioxide (CO₂) heat pumps are receiving more and more attention. However, improperly set operating parameters have a serious negative impact on the performance of the transcritical CO₂ heat pump due to the properties of CO₂. In this study, the heat transfer characteristics of the gas cooler are studied based on the modified “three-stage” gas cooler, then the effect of three operating parameters, compressor speed, gas cooler water-inlet flowrate and gas cooler water-inlet temperature, on the heating process of the system are investigated from the perspective of thermal quality and heat capacity. The results shows that: In the heat transfer process of gas cooler, the temperature distribution of CO₂ and water shows a typical “two region” and “three zone” pattern; The rise in the cooling pressure of CO₂ serves to increase the thermal quality on the CO₂ side of the gas cooler, which in turn improves the heating temperature of the system; Nevertheless, the elevated thermal quality on the CO₂ side can exacerbate the mismatch of heat capacity on both sides of the gas cooler, thereby adversely affecting the system coefficient of performance (COP); Furthermore, increasing compressor speed mitigates the mismatch in heat capacity caused by elevated thermal quality, which is exacerbated by decreasing gas cooler water-inlet flowrate and rising gas cooler water-inlet temperature; As a delegate, the varying compressor speed results in a 7.1°C increase in heating temperature within the experimental range, accompanied by a 10.01% decrease in COP and an 11.36% increase in heating capacity. This study can not only provide an important reference for the theoretical analysis and control strategy of the transcritical CO₂ heat pump, but also guide the related simulation and the design of the gas cooler. However, the range of experimental parameters in the current study is small and the conclusions drawn are not further analysed quantitatively. Therefore, expanding the range of parameters studied and proposing corresponding quantitative conclusions and indicators with universal applicability could greatly increase the practical applicability of this study. This is also the goal of our next research.Keywords: transcritical CO₂ heat pump, gas cooler, heat capacity, thermal quality
Procedia PDF Downloads 242809 Standardized Black Ginseng Extract Improving a Suppressed Immunomodulatory Effect Induced by Heat Stress
Authors: Byung Wook Yang, Jong Dae Park, Wang Soo Shin, Ji-Hyeon Song, Seo-Yun Choi, Boo-Yong Lee, Young Tae Hahm
Abstract:
Korean ginseng (Panax ginseng C. A. Meyer) is frequently taken orally as a traditional herbal medicine with ginsenosides as the main pharmacological component in Asian countries, and its use is increasing worldwide. Recently, the increase in global temperature has been reported to cause various kinds of biological disorders induced by heat stress in human. The standardized black ginseng extract (SBGE; KGR-BG1) was developed in our biological screening experiment on the thermo-regulation, whose chemical characteristics were evaluated as ginsenoside Rg1, Rb1, Rg3(S), as well as Re, Rf, Rg2(S), Rh1(S), Rh2(S), and Rg5+Rk1. Heat stress responses such as body weight, food intake, water consumption have been measured when treated with Standardized Black Ginseng Extract (SBGE) in the animal experiment and also, biomarkers. SBGE treated group has been found to inhibit a decrease in body weight, a decrease in food intake and an increase in the water consumption when compared with non-treated group against environmental heat stress. These results suggest that SBGE might have a protective effect against environmental heat stress. And also, the several factors of stress response on the immune system need to be done for further studies and its evaluation is in progress.Keywords: ginseng, ginsenoside, standardization, heat stress, immunomodulatory effect
Procedia PDF Downloads 2982808 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 3382807 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings
Authors: Sandeep Bandarwadkar, Tadas Zdankus
Abstract:
To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.Keywords: heat transfer, accumulation of heat, underground building, soil charge
Procedia PDF Downloads 722806 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior
Procedia PDF Downloads 1612805 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids
Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci
Abstract:
The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD
Procedia PDF Downloads 4882804 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction
Authors: Zahra Neffah, Henda Kahalerras
Abstract:
A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel
Procedia PDF Downloads 4132803 Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects
Authors: Muhammad Faraz, Talat Rafique, Jang Min Park
Abstract:
In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c.Keywords: bödewadt flow, vortex flow, rotating flows, prescribed heat flux, permeable surface, activation energy
Procedia PDF Downloads 116