Search results for: nano vibration
1394 Magnetorheological Elastomer Composites Obtained by Extrusion
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties
Procedia PDF Downloads 3181393 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production
Authors: Nneka Osuchukwu, Leonid Shpanin
Abstract:
The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.Keywords: energy harvesting, piezoelectric material, propeller vibration, unmanned aerial vehicle
Procedia PDF Downloads 4731392 Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories
Authors: Saeed Kamarian
Abstract:
In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT.Keywords: sandwich beam, nanocomposite beam, functionally graded materials, higher-order beam theories, Mori-Tanaka approach
Procedia PDF Downloads 4621391 Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides
Authors: Prateeksha Sharma, V. Dinesh Kumar
Abstract:
Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc.Keywords: hybrid insulator metal insulator, hybrid metal insulator metal, nano laser, surface plasmon polariton
Procedia PDF Downloads 4271390 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS
Authors: M. Tabatabaee, R. Mohebat, M. Baranian
Abstract:
Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.Keywords: zinc sulfide, nano articles, photodegradation, solar light
Procedia PDF Downloads 4041389 Synthesis Using Sintering and Characterisation of FeCrCoNiZn Alloy Using SEM and Nanoindentation
Authors: Steadyman Chikumba, Vasudeva Vereedhi Rao
Abstract:
This paper reports on the synthesis of FeCrCoNiZn and its characterisation using SEM and nanoindentation. The high entropy alloy FeCrCoNiZn was fabricated using spark plasma sintering at a temperature of 1100ᵒC from powders mixed for 9 hours. The powders mixture was equimolar, and the resultant microstructure had a single crystalline structure when studied under SEM. Several nano Vickers hardness measurements were taken on a polished surface etched by Nital solution. The hardness ranged from 711 Vickers to a maximum of 1773.2. The alloy FeCrCoNiZn showed a nano hardness of 1070 Vickers and a modulus of elasticity of 460.4 MPa. The process managed to fabricate a very hard material that can find applications where wear resistance is desired.Keywords: high entropy alloy, FeCrVNiZn, nanohardness, SEM
Procedia PDF Downloads 991388 Asymmetric of the Segregation-Enhanced Brazil Nut Effect
Authors: Panupat Chaiworn, Soraya lama
Abstract:
We study the motion of particles in cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to free surface of the bed particles and find that the rising time as a function of intruder density increases to a maximum and then decreases monotonically. The result is qualitatively accord to the previous findings in experiments using relative humidity of the bed particles and found speed convection of the bed particles containers it moving slowly, and the rising time of the intruder where a minimal instead of maximal rising time in the small density region was found. Our experimental results suggest that the topology of the container plays an important role in the Brazil nut effect.Keywords: granular particles, Brazil nut effect, cylinder container, vertical vibration, convection
Procedia PDF Downloads 5281387 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel
Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa
Abstract:
Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel
Procedia PDF Downloads 3501386 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications
Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma
Abstract:
Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties
Procedia PDF Downloads 4561385 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis
Procedia PDF Downloads 3081384 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite
Authors: Mohamed M. Emara, Heba Ashraf
Abstract:
This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability
Procedia PDF Downloads 5261383 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1311382 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review
Authors: Bochen Jia, Francesco Zhu
Abstract:
People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.Keywords: virtual reality, sense of presence, self-awareness, literature review
Procedia PDF Downloads 1301381 Morphostructural Characterization of Zinc and Manganese Nano-Oxides
Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu
Abstract:
The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.Keywords: characterization, morphological, nano-oxides, structural
Procedia PDF Downloads 2781380 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios
Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan
Abstract:
Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nano-particles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000 Ao (or 100 nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm. Procedia PDF Downloads 4441379 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia
Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei
Abstract:
Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration
Procedia PDF Downloads 1901378 Preparation of Nano-Scaled linbo3 by Polyol Method
Authors: Gabriella Dravecz, László Péter, Zsolt Kis
Abstract:
Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.Keywords: lithium-niobate, nanoparticles, polyol, SEM
Procedia PDF Downloads 1341377 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis
Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu
Abstract:
Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide
Procedia PDF Downloads 2391376 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 431375 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.Keywords: continuous synthesis, energetic material, nanoscale, nanoexplosive, nanothermite
Procedia PDF Downloads 2641374 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5
Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition
Procedia PDF Downloads 2171373 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades
Authors: Abdullah Alnutayfat, Alexander Sutin
Abstract:
One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation
Procedia PDF Downloads 851372 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis
Authors: Lokanath Barik, Abinash Kumar Swain
Abstract:
This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA
Procedia PDF Downloads 821371 Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites
Authors: L. N. Shubha, P. Madhusudana Rao
Abstract:
The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures.Keywords: polyaniline/copper oxide (PANI/CuO) nanocomposite, XRD, SEM, FTIRand DC- conductivity, UV-visible spectra
Procedia PDF Downloads 3071370 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 3731369 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator
Authors: Wiqar Hussain Shah
Abstract:
The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor
Procedia PDF Downloads 441368 Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study
Authors: Ehsan A. Yahia, Ayman E. El-Sharkawey, Magda M. Bayoumi
Abstract:
Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot.Keywords: diabetes, wound care, diabetic foot, wound dressing, hydrogel nanosilver
Procedia PDF Downloads 1131367 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network
Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti
Abstract:
Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.Keywords: unbalance, parallel misalignment, combined faults, vibration signals
Procedia PDF Downloads 3541366 A Connected Structure of All-Optical Logic Gate “NOT-AND”
Authors: Roumaissa Derdour, Lebbal Mohamed Redha
Abstract:
We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics.Keywords: logic gates, photonic crystals, optical integrated circuits, resonant cavities
Procedia PDF Downloads 981365 Multifunctional 1D α-Fe2O3/ZnO Core/Shell Semiconductor Nano-Heterostructures: Heterojunction Engineering
Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar
Abstract:
This study reports the facile fabrication of 1D ZnO/α-Fe2O3 semiconductor nano-heterostructures (SNHs), and we investigate the strong interfacial interactions at the heterojunction, resulting in novel multifunctionality in the hybrid structure. ZnO-coated α-Fe2O3 nanowires (NWs) have been prepared by combining electrodeposition and wet chemical methods. Significant improvement in electrical conductivity, photoluminescence, and room temperature magnetic properties have been observed for the ZnO/α-Fe2O3 SNHs over the pristine α-Fe2O3 NWs because of the contribution of the ZnO nanolayer. The increase in electrical conductivity in ZnO/α-Fe2O3 SNHs is because of the increase in free electrons in the conduction band of the SNHs due to the formation of type-II n-n band configuration at the heterojunction. The SNHs are found to exhibit enhanced visible green photoluminescence along with the UV emission at room temperature. The band-gap emission of the α-Fe2O3 NWs coupled to the defect emissions of the ZnO in SNHs can be attributed to the profound enhancement of the visible green luminescence. Ferromagnetism of the SNHs is found to be increased nearly five times in magnitude over the primeval α-Fe2O3 NWs, which can be ascribed to the exchange coupling of the interfacial spin at ZnO/α-Fe2O3 interface, the surface spin of ZnO nanolayer, along with the structural defects like the cation vacancies (VZn) and the singly ionized oxygen vacancies (Vo•) present in SNHs.Keywords: nano-heterostructures, photoluminescence, electrical property, magnetism
Procedia PDF Downloads 256