Search results for: integrated soil fertility management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14112

Search results for: integrated soil fertility management

13602 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana

Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson

Abstract:

E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.

Keywords: e-waste, geostatistics, soil contamination, spatial distribution

Procedia PDF Downloads 497
13601 Determination of Suction of Arid Region Soil Using Filter Paper Method

Authors: Bhavita S. Dave, Chandresh H. Solanki, Atul K. Desai

Abstract:

Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC.

Keywords: suction, arid region soil, soil freezing characteristic curve, freezing-thawing cycle

Procedia PDF Downloads 203
13600 Effectiveness of Jute Geotextiles for Hill Slope Stabilization in Adverse Climatic Condition

Authors: Pradip Choudhury, Tapobrata Sanyal

Abstract:

Effectiveness of Jute Geotextiles (JGT) in hill slope management now stands substantiated. The reasons of its efficacy are attributed to its bio-degradability, hygroscopic property and its thickness. Usually open weave JGT is used for slope management. Thickness of JGT helps in reducing the velocity of surface run-off, thus curbing the extent of migration of soil particles detached as a result of kinetic energy of rain-drops and also of wind effects. Initially JGT acts as cover of the surface of slope thus protect movement of loose soil particles. Hygroscopic property of jute effects overland storage of the flow. JGT acts as mulch and creates a congenial micro-climate that fosters quick growth of vegetation on bio-degradation. In fact JGT plays an important role in bio-remediation of slope-erosion problems. Considering the environmental aftermath, JGT is the preferred option in developed countries for surface soil conservation against erosion. In India JGT has not been tried in low temperature zones at high altitudes where temperature goes below the freezing point (even below - 25° Celsius). The behavior of JGT in such low-temperature zones is not precisely known. The 16th BRTF of Project Himank of Border Roads Organization (BRO) has recently taken the initiative to try two varieties of JGT , ie, 292 gsm and 500 gsm at two different places for hill slope management in Leh, a high altitude place of about 2,660 mtrs and 4900 mtrs above MSL respectively in Jammu & Kashmir where erosion is caused more as a result of rapid movement of sand particles due to high wind (wind erosion. Soil particles of the region formed naturally by weathering of fragile rocks are usually loosely bonded (non-cohesive), undergo dissociation with the rise in wind force and kinetic energy of rain drops and are blown away by wind. Open weave JGT interestingly was observed to contain the dissociated soil particles within its pores and lend stability the affected soil mass to a great extent thus preventing its movement by extraneous agents such as wind. The paper delineates about climatic factors, type of JGT used and the prevailing site conditions with an attempt to analyze the mechanism of functioning of JGT in low temperature zones.

Keywords: climate, erosion, jutegeotextile, stabilize

Procedia PDF Downloads 410
13599 Integrated Management System Applied in Dismantling and Waste Management of the Primary Cooling System from the VVR-S Nuclear Reactor Magurele, Bucharest

Authors: Radu Deju, Carmen Mustata

Abstract:

The VVR-S nuclear research reactor owned by Horia Hubulei National Institute of Physics and Nuclear Engineering (IFIN-HH) was designed for research and radioisotope production, being permanently shut-down in 2002, after 40 years of operation. All amount of the nuclear spent fuel S-36 and EK-10 type was returned to Russian Federation (first in 2009 and last in 2012), and the radioactive waste resulted from the reprocessing of it will remain permanently in the Russian Federation. The decommissioning strategy chosen is immediate dismantling. At this moment, the radionuclides with half-life shorter than 1 year have a minor contribution to the contamination of materials and equipment used in reactor department. The decommissioning of the reactor has started in 2010 and is planned to be finalized in 2020, being the first nuclear research reactor that has started the decommissioning project from the South-East of Europe. The management system applied in the decommissioning of the VVR-S research reactor integrates all common elements of management: nuclear safety, occupational health and safety, environment, quality- compliance with the requirements for decommissioning activities, physical protection and economic elements. This paper presents the application of integrated management system in decommissioning of systems, structures, equipment and components (SSEC) from pumps room, including the management of the resulted radioactive waste. The primary cooling system of this type of reactor includes circulation pumps, heat exchangers, degasser, filter ion exchangers, piping connection, drainage system and radioactive leaks. All the decommissioning activities of primary circuit were performed in stage 2 (year 2014), and they were developed and recorded according to the applicable documents, within the requirements of the Regulatory Body Licenses. In the presentation there will be emphasized how the integrated management system provisions are applied in the dismantling of the primary cooling system, for elaboration, approval, application of necessary documentation, records keeping before, during and after the dismantling activities. Radiation protection and economics are the key factors for the selection of the proper technology. Dedicated and advanced technologies were chosen to perform specific tasks. Safety aspects have been taken into consideration. Resource constraints have also been an important issue considered in defining the decommissioning strategy. Important aspects like radiological monitoring of the personnel and areas, decontamination, waste management and final characterization of the released site are demonstrated and documented.

Keywords: decommissioning, integrated management system, nuclear reactor, waste management

Procedia PDF Downloads 276
13598 Anlaytical Studies on Subgrade Soil Using Jute Geotextile

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 418
13597 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields

Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko

Abstract:

Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.

Keywords: methane, paddy fields, rice varieties, soil moisture

Procedia PDF Downloads 65
13596 Gas Monitoring and Soil Control at the Natural Gas Storage Site (Minerbio, Italy)

Authors: Ana Maria Carmen Ilie, Carmela Vaccaro

Abstract:

Gas migration through wellbore failure, in particular from abandoned wells, is repeatedly identified as the highest risk mechanism. The vadose zone was subject to monitoring system close to the wellbore in Minerbio, methane storage site. The new technology has been well-developed and used with the purpose to provide reliable estimates of leakage parameters. Of these techniques, soil flux sampling at the soil surface, via the accumulation chamber method and soil flux sampling at the depths of 100cm below the ground surface, have been an important technique for characterizing the gas concentrations at the gas storage site. We present results of soil Radon Bq/m3, CO2%, CH4% and O2% concentration gases. Measurements have been taken for radon concentrations with an Durridge RAD7 Company, Inc., USA, instrument. We used for air and soil quality an Biogas ETG instrument monitoring system, with NDIR CO2, CH4 gas sensor and electrochemical O2 gas sensor. The measurements started in September-October 2015, where no outliers have been identified. The measurements have continued in March-April-July-August-September 2016, almost at the same time in the same place around the gas storage site, values measured 15 minutes for each sampling, to determine their concentration, their distribution and to understand the relationship among gases and atmospheric conditions. At a depth of 100 cm, the maximum soil radon gas concentrations were found to be 1770 ±±582 Bq/m3, the soil consists of 64.31% sand, 20.75% silt and 14.94% clay, and with 0.526 ppm of Uranium. The maximum concentration (September 2016), in soil at 100cm below the ground surface, with 83% sand, 8.96% silt and 7.89% clay, was about 0.06% CH4, and in atmosphere 0.06% CH4 at 40°C (T). In the other months the values have been on the range of 0.01% to 0.03% CH4. Since we did not have outliers in the gas storage site, soil-gas samples for isotopic analysis have not been done.

Keywords: leakage gas monitoring, lithology, soil gas, methane

Procedia PDF Downloads 423
13595 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions

Authors: W. S. Mohamed, A. A. Hammam

Abstract:

Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.

Keywords: biochar, dissolved organic carbon, N-uptake, poultry, sandy soil

Procedia PDF Downloads 126
13594 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 304
13593 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 150
13592 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 203
13591 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 122
13590 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 111
13589 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role

Procedia PDF Downloads 76
13588 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor

Authors: Sirisak Choedkiatphon, Tanya Niyamapa

Abstract:

This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.

Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam

Procedia PDF Downloads 190
13587 Integrated Management of Tithonia Diversifolia in the Vhembe Biosphere Reserve

Authors: Mutavhatsindi Tshinakaho

Abstract:

Invasive alien plants (IAP’s) are referred to as species that are non-native to the ecosystem under consideration. Whose introduction causes or is likely to cause economic, ecological, or environmental harm. The integrated management of the invasive plant, Tithonia diversifolia, will be assessed through two herbicide trials (one on the seedlings and the other on matured plants) and a competitive trial between Tithonia and invasive grass species. The initial herbicide trial will be undertaken at the University of Venda Agricultural greenhouse facilities, where Tithonia will be planted in pot plants and watered every after two days until they reach at least 30 cm and will then be subjected to four different herbicide treatments (Metsulfuron methyl, Fluroxypyr, Picloram, Triclopyr), water will be utilised as a control. The percentage damage to foliar will be recorded. The second herbicide trial will be undertaken at Levubu road site, where matured Tithonia will be cut at at least 10cm above the ground and the subjected to herbicide treatments (Picloram, Fluroxypyr, Imazapyr, and Water as a control). The site will be visited post treatment for assessment. For the competition trial, tall grass species will be chosen as competitors (Panicum maximum and Eragrostis murvula), they will be grown at six densities per pot in the greenhouse facilities at the University of Venda, were they will be kept watered for the duration of the experiment. At the end of the experiment, plants will be removed from pots, and the above and below ground biomass will be weighed. The expected results are to know the effective integrated management strategy for T. diversifolia, the effective rehabilitation of T. diversifolia invaded habitats, and the effective chemical control of T. diversifolia

Keywords: foliar, biomass, competition, invasion

Procedia PDF Downloads 71
13586 Influence of P-Y Curves on Buckling Capacity of Pile Foundation

Authors: Praveen Huded, Suresh Dash

Abstract:

Pile foundations are one of the most preferred deep foundation system for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Recent centrifuge and shake table experiments on two layered soil system have credibly shown that failure of pile foundation can occur because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However the buckling capacity depends on largely on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient method to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, different author have proposed different types of p-y curves for the liquefiable soil. In the present paper the influence two such p-y curves on the buckling capacity of pile foundation is studied considering initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. Significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile diameter, pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on buckling capacity of pile foundation.

Keywords: Pile foundation , Liquefaction, Buckling load, non-linear py curve, Opensees

Procedia PDF Downloads 145
13585 Soil Water Retention and Van Genuchten Parameters following Tillage and Manure Effects

Authors: Shahin Farajifar, Azadeh Safadoust, Ali Akbar Mahboubi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.

Keywords: corn, manuure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 58
13584 Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures

Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf

Abstract:

The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water.

Keywords: clayey soil, MSWIFA, proctor test, rubber

Procedia PDF Downloads 97
13583 Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review

Authors: Khawar Naeem, Adel Elomri, Adel Zghibi

Abstract:

Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development.

Keywords: groundwater contamination, environmental risk, municipal solid waste management, system dynamic modeling, water resource sustainability, sustainable development

Procedia PDF Downloads 46
13582 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 406
13581 Effect of Fiber Inclusion on the Geotechnical Parameters of Clayey Soil Subjected to Freeze-Thaw Cycles

Authors: Arun Prasad, P. B. Ramudu, Deep Shikha, Deep Jyoti Singh

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive soils.Freezing and thawing of soil affects the strength, durability and permeability of soil adversely. Experiments were carried out in order to investigate the effect of inclusion of randomly distributed polypropylene fibers on the strength, hydraulic conductivity and durability of local soil (CL) subjected to freeze–thaw cycles. For evaluating the change in strength of soil, a series of unconfined compression tests as well as tri-axial tests were carried out on reinforced and unreinforced soil samples. All the samples were subjected to seven cycles of freezing and thawing. Freezing was carried out at a temperature of - 15 to -18 °C; and thawing was carried out by keeping the samples at room temperature. The reinforcement of soil samples was done by mixing with polypropylene fibers, 12 mm long and with an aspect ratio of 240. The content of fibers was varied from 0.25 to 1% by dry weight of soil. The maximum strength of soil was found in samples having a fiber content of 0.75% for all the samples that were prepared at optimum moisture content (OMC), and if the OMC was increased (+2% OMC) or decreased (-2% OMC), the maximum strength observed at 0.5% fiber inclusion. The effect of fiber inclusion and freeze–thaw on the hydraulic conductivity was studied increased from around 25 times to 300 times that of the unreinforced soil, without subjected to any freeze-thaw cycles. For studying the increased durability of soil, mass loss after each freeze-thaw cycle was calculated and it was found that samples reinforced with polypropylene fibers show 50-60% less loss in weight than that of the unreinforced soil.

Keywords: fiber reinforcement, freezingand thawing, hydraulic conductivity, unconfined compressive strength

Procedia PDF Downloads 382
13580 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans

Procedia PDF Downloads 140
13579 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column

Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura

Abstract:

Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.

Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column

Procedia PDF Downloads 216
13578 Factors Affecting in Soil Analysis Technique Adopted by the Southern Region Farmers, Syria

Authors: Moammar Dayoub

Abstract:

The study aimed to know the reality of farmers and determine the extent of adoption of the recommendations of the fertilizer and the difficulties and problems they face. The study was conducted on a random sample of farmers consist of 95 farmers who had analysed their field soil in scientific research centres in agricultural southern region through the form specially prepared for this purpose, the results showed that the rate of adoption of the fertilizer recommendations whole amounted to an average of 36.9% in the southern region, The degree of adoption was 34.7% in the region. The results showed that 41% of farmers did not implement the recommendations because of the non-convenient analysis, and 34% due to neglect, and 15% due to the weather and an environment, while 10% of them for lack of manure in the suitable time. The study also revealed that Independent factors affecting the continuing adoption of soil analysis are: farms experience, sampling method in farmer’s schools, irrigated area, and personal knowledge of farmers in analysing the soil. Also, show that the application of fertilizer recommendations led to increased production by 15-20%, this analysis emphasizes the importance of soil analysis and adherence to the recommendations of the research centres.

Keywords: adoption, recommendations of the fertilizer, soil analysis, southern region

Procedia PDF Downloads 152
13577 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus

Authors: Violina Angelova, Stefan Krustev

Abstract:

The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.

Keywords: available soil phosphorus, certified samples, determination, soil test extractants

Procedia PDF Downloads 127
13576 The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures

Authors: Faezeh Eslamian, Zhiming Qi, Michael J. Tate

Abstract:

Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils.

Keywords: leaching, lime, phosphorus, soil texture

Procedia PDF Downloads 146
13575 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 102
13574 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 425
13573 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 387