Search results for: hazard of noise
1258 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5751257 Improved Regression Relations Between Different Magnitude Types and the Moment Magnitude in the Western Balkan Earthquake Catalogue
Authors: Anila Xhahysa, Migena Ceyhan, Neki Kuka, Klajdi Qoshi, Damiano Koxhaj
Abstract:
The seismic event catalog has been updated in the framework of a bilateral project supported by the Central European Investment Fund and with the extensive support of Global Earthquake Model Foundation to update Albania's national seismic hazard model. The earthquake catalogue prepared within this project covers the Western Balkan area limited by 38.0° - 48°N, 12.5° - 24.5°E and includes 41,806 earthquakes that occurred in the region between 510 BC and 2022. Since the moment magnitude characterizes the earthquake size accurately and the selected ground motion prediction equations for the seismic hazard assessment employ this scale, it was chosen as the uniform magnitude scale for the catalogue. Therefore, proxy values of moment magnitude had to be obtained by using new magnitude conversion equations between the local and other magnitude types to this unified scale. The Global Centroid Moment Tensor Catalogue was considered the most authoritative for moderate to large earthquakes for moment magnitude reports; hence it was used as a reference for calibrating other sources. The best fit was observed when compared to some regional agencies, whereas, with reports of moment magnitudes from Italy, Greece and Turkey, differences were observed in all magnitude ranges. For teleseismic magnitudes, to account for the non-linearity of the relationships, we used the exponential model for the derivation of the regression equations. The obtained regressions for the surface wave magnitude and short-period body-wave magnitude show considerable differences with Global Earthquake Model regression curves, especially for low magnitude ranges. Moreover, a conversion relation was obtained between the local magnitude of Albania and the corresponding moment magnitude as reported by the global and regional agencies. As errors were present in both variables, the Deming regression was used.Keywords: regression, seismic catalogue, local magnitude, tele-seismic magnitude, moment magnitude
Procedia PDF Downloads 691256 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4381255 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: identification, Hammerstein-Wiener, optimization, quantization
Procedia PDF Downloads 2571254 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal
Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni
Abstract:
This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal
Procedia PDF Downloads 5031253 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 681252 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India
Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad
Abstract:
In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy
Procedia PDF Downloads 3621251 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil
Authors: Mary Allagoa, Abir Al-Tabbaa
Abstract:
The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.Keywords: risk ADI, risk CDI, ILCR, novel binders, additives binders, hazard index
Procedia PDF Downloads 8101250 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems
Authors: Mohammad Mohammadzadeh, Alireza Ghasempour
Abstract:
In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm
Procedia PDF Downloads 2991249 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation
Authors: P. Mukhopadhyay, N. C. Dey
Abstract:
Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.Keywords: workload, working heart rate, occupational health hazard, industrial worker
Procedia PDF Downloads 1341248 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1301247 Urban Freight Station: An Innovative Approach to Urban Freight
Authors: Amit Kumar Jain, Surbhi Jain
Abstract:
The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.Keywords: congestion, urban freight, intelligent transport system, pollution
Procedia PDF Downloads 3031246 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single
Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa
Abstract:
Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600 minimum load impedance of the DAQ card with the 5 to 20 low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.Keywords: flux density, electrical steel, LabVIEW, magnetization
Procedia PDF Downloads 2911245 An Extension of the Generalized Extreme Value Distribution
Authors: Serge Provost, Abdous Saboor
Abstract:
A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.Keywords: extreme value theory, generalized extreme value distribution, goodness-of-fit statistics, Gumbel distribution
Procedia PDF Downloads 3491244 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study
Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green
Abstract:
Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study
Procedia PDF Downloads 21243 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating
Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi
Abstract:
In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran
Procedia PDF Downloads 3511242 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3021241 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 2471240 Legal Judgment Prediction through Indictments via Data Visualization in Chinese
Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun
Abstract:
Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization
Procedia PDF Downloads 1211239 Verification of a Simple Model for Rolling Isolation System Response
Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly
Abstract:
Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system
Procedia PDF Downloads 2501238 Deep Learning to Improve the 5G NR Uplink Control Channel
Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche
Abstract:
The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LSKeywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning
Procedia PDF Downloads 821237 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 1741236 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA
Authors: S. Saju, G. Thirugnanam
Abstract:
In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet
Procedia PDF Downloads 5281235 Clinical Efficacy of Nivolumab and Ipilimumab Combination Therapy for the Treatment of Advanced Melanoma: A Systematic Review and Meta-Analysis of Clinical Trials
Authors: Zhipeng Yan, Janice Wing-Tung Kwong, Ching-Lung Lai
Abstract:
Background: Advanced melanoma accounts for the majority of skin cancer death due to its poor prognosis. Nivolumab and ipilimumab are monoclonal antibodies targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocytes antigen 4 (CTLA-4). Nivolumab and ipilimumab combination therapy has been proven to be effective for advanced melanoma. This systematic review and meta-analysis are to evaluate its clinical efficacy and adverse events. Method: A systematic search was done on databases (Pubmed, Embase, Medline, Cochrane) on 21 June 2020. Search keywords were nivolumab, ipilimumab, melanoma, and randomised controlled trials. Clinical trials fulfilling the inclusion criteria were selected to evaluate the efficacy of combination therapy in terms of prolongation of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The odd ratios and distributions of grade 3 or above adverse events were documented. Subgroup analysis was performed based on PD-L1 expression-status and BRAF-mutation status. Results: Compared with nivolumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR in combination therapy were 0.64 (95% CI, 0.48-0.85; p=0.002), 0.84 (95% CI, 0.74-0.95; p=0.007) and 1.76 (95% CI, 1.51-2.06; p < 0.001), respectively. Compared with ipilimumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR were 0.46 (95% CI, 0.37-0.57; p < 0.001), 0.54 (95% CI, 0.48-0.61; p < 0.001) and 6.18 (95% CI, 5.19-7.36; p < 0.001), respectively. In combination therapy, the odds ratios of grade 3 or above adverse events were 4.71 (95% CI, 3.57-6.22; p < 0.001) compared with nivolumab monotherapy, and 3.44 (95% CI, 2.49-4.74; p < 0.001) compared with ipilimumab monotherapy, respectively. High PD-L1 expression level and BRAF mutation were associated with better clinical outcomes in patients receiving combination therapy. Conclusion: Combination therapy is effective for the treatment of advanced melanoma. Adverse events were common but manageable. Better clinical outcomes were observed in patients with high PD-L1 expression levels and positive BRAF-mutation.Keywords: nivolumab, ipilimumab, advanced melanoma, systematic review, meta-analysis
Procedia PDF Downloads 1361234 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment
Authors: Bulcha Belay Etana
Abstract:
Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile
Procedia PDF Downloads 1351233 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2021232 Establishment of Decision Support Center for Managing Natural Hazard Consequence in Kuwait
Authors: Abdullah Alenezi, Mane Alsudrawi, Rafat Misak
Abstract:
Kuwait is faced with a potentially wide and harmful range of both natural and anthropogenic hazardous events such as dust storms, floods, fires, nuclear accidents, earthquakes, oil spills, tsunamis and other disasters. For Kuwait can be highly vulnerable to these complex environmental risks, an up-to-date and in-depth understanding of their typology, genesis, and impact on the Kuwaiti society is needed. Adequate anticipation and management of environmental crises further require a comprehensive system of decision support to the benefit of decision makers to further bridge the gap between (technical) risk understanding and public action. For that purpose, the Kuwait Institute for Scientific Research (KISR), intends to establish a decision support center for management of the environmental crisis in Kuwait. The center will support policy makers, stakeholders and national committees with technical information that helps them efficiently and effectively assess, monitor to manage environmental disasters using decision support tools. These tools will build on state of the art quantification and visualization techniques, such as remote sensing information, Geographical Information Systems (GIS), simulation and prediction models, early warning systems, etc. The center is conceived as a central facility which will be designed, operated and managed by KISR in coordination with national authorities and decision makers of the country. Our vision is that by 2035 the center will be recognized as a leading national source of scientific advice on national risk management in Kuwait and build unity of effort among Kuwaiti’s institutions, government agencies, public and private organizations through provision and sharing of information. The project team now focuses on capacity building through upgrading some KISR facilities manpower development, build strong collaboration with international alliance.Keywords: decision support, environment, hazard, Kuwait
Procedia PDF Downloads 3131231 Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards
Authors: S. P. Rana
Abstract:
Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level.Keywords: re-rolling mill, hazard, accident, health hazards
Procedia PDF Downloads 4421230 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm
Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai
Abstract:
Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC
Procedia PDF Downloads 1891229 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor
Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof
Abstract:
The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.Keywords: CMOS, ECG, amplifier, low power
Procedia PDF Downloads 248