Search results for: concrete mix design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13531

Search results for: concrete mix design

13021 Effect Different Moisture States of Surface-treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes.

Keywords: moisture state, recycled concrete aggregate, surface treatment

Procedia PDF Downloads 246
13020 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 311
13019 Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, Muhd Fadhil Nuruddin, Ali Elheber Ahmed

Abstract:

Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix.

Keywords: self-compacting concrete, silica fume, steel fiber, fresh taste

Procedia PDF Downloads 545
13018 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.

Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis

Procedia PDF Downloads 342
13017 Reuse of Refractory Brick Wastes (RBW) as a Supplementary Cementitious Materials in a High Performance Fiber-Reinforced Concrete

Authors: B. Safi, B. Amrane, M. Saidi

Abstract:

The main purpose of this study is to evaluate the reuse of refractory brick wastes (RBW) as a supplementary cementitious materials (by a total replacement of silica fume) to produce a high performance fiber-reinforced concrete (HPFRC). This work presents an experimental study on the formulation and physico-mechanical characterization of ultra high performance fiber reinforced concretes based on three types of refractory brick wastes. These have been retrieved from the manufacturing unit of float glass MFG (Mediterranean Float Glass) after their use in the oven basin (ie d. they are considered waste unit). Three compositions of concrete (HPFRC) were established based on three types of refractory brick wastes (finely crushed), with the dosage of each type of bricks is kept constant, similar the dosage of silica fume used for the control concrete. While all the other components and the water/binder ratio are maintained constant with the same quantity of the superplasticizer. The performance of HPFRC, were evaluated by determining the essential characteristics of fresh and hardened concrete.

Keywords: refractory bricks, concrete, fiber, fluidity, compressive strength, tensile strength

Procedia PDF Downloads 585
13016 Field Evaluation of Concrete Using Hawaiian Aggregates for Alkali Silica Reaction

Authors: Ian N. Robertson

Abstract:

Alkali Silica Reaction (ASR) occurs in concrete when the alkali hydroxides (Na, K and OH) from the cement react with unstable silica, SiO2, in some types of aggregate. The gel that forms during this reaction will expand when it absorbs water, potentially leading to cracking and overall expansion of the concrete. ASR has resulted in accelerated deterioration of concrete highways, dams and other structures that are exposed to moisture during their service life. Concrete aggregates available in Hawaii have not demonstrated a history of ASR, however, accelerated laboratory tests using ASTM 1260 indicated a potential for ASR with some aggregates. Certain clients are now requiring import of aggregates from the US mainland at great expense. In order to assess the accuracy of the laboratory test results, a long-term field study of the potential for ASR in concretes made with Hawaiian aggregates was initiated in 2011 with funding from the US Federal Highway Administration and Hawaii Department of Transportation. Thirty concrete specimens were constructed of various concrete mixtures using aggregates from all Hawaiian aggregate sources, and some US mainland aggregates known to exhibit ASR expansion. The specimens are located in an open field site in Manoa valley on the Hawaiian Island of Oahu, exposed to relatively high humidity and frequent rainfall. A weather station at the site records the ambient conditions on a continual basis. After two years of monitoring, only one of the Hawaiian aggregates showed any sign of expansion. Ten additional specimens were fabricated with this aggregate to confirm the earlier observations. Admixtures known to mitigate ASR, such as fly ash and lithium, were included in some specimens to evaluate their effect on the concrete expansion. This paper describes the field evaluation program and presents the results for all forty specimens after four years of monitoring.

Keywords: aggregate, alkali silica reaction, concrete durability, field exposure

Procedia PDF Downloads 225
13015 Bonding Capacity of GFRP Sheet on Strengthen Concrete Beams After Influenced the Marine Environment

Authors: Mufti Amir Sultan, Rudy Djamaluddin, Rita Irmawaty

Abstract:

Structures built in aggressive environments such as in the sea/marine environment need to be carefully designed, due to the possibility of chloride ion penetration into the concrete. One way to reduce the strength degradation in such environment is to use FRP, which is attached to the surface of reinforced concrete using epoxy. A series of the specimen of reinforced concrete beams with dimension 100×120×600 mm were casted. Beams were immersed in the sea for 3 months (BL3), 6 months (BL6), and 12 months (BL12). Three specimens were prepared control beam without immersion to the sea (B0). The study presented is focused on determining the effect of the marine environment to the capacity of GFRP as flexural external reinforcement elements. The result indicated that the bonding capacity of BL3, BL6, and BL12 compared to B0 decreased for 7.91%, 11.99%, and 37.83%, respectively. The decreasing was caused by the weakening of the bonding capacity GFRP due to the influence of the marine environment.

Keywords: flexural, GFRP, marine environment, bonding capacity

Procedia PDF Downloads 332
13014 Durability of Reinforced Concrete Structure on Very High Aggressive Environment: A Case Study

Authors: Karla Peitl Miller, Leomar Bravin Porto, Kaitto Correa Fraga, Nataniele Eler Mendes

Abstract:

This paper presents the evaluation and study of a real reinforced concrete structure of a fertilizer storage building, constructed on a Vale’s Port at Brazil, which has been recently under refurbishment. Data that will be shared and commented aim to show how wrong choices in project concepts allied to a very high aggressive environment lead to a fast track degradation, incurring on a hazardous condition associated with huge and expensive treatment for repair and guarantee of minimum performance conditions and service life. It will be also shown and discussed all the covered steps since pathological manifestations first signs were observed until the complete revitalization and reparation planning would be drawn. The conclusions of the work easily explicit the importance of professional technical qualification, the importance of minimum requirements for design and structural reforms, and mainly, the importance of good inspection and diagnostic engineering continuous work.

Keywords: durability, reinforced concrete repair, structural inspection, diagnostic engineering

Procedia PDF Downloads 117
13013 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 52
13012 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution

Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 377
13011 A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns

Authors: Eylem Guzel, Faruk Osmanoglu, Muhammet Kurucu

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian standard

Procedia PDF Downloads 377
13010 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 353
13009 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material

Authors: Imran Altaf Wasil, Dinesh Ganvir

Abstract:

Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.

Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties

Procedia PDF Downloads 93
13008 Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study

Authors: M. Benzerara, B. Redjel, B. Kebaili

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: concrete, fissure, specimen, toughness

Procedia PDF Downloads 283
13007 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone

Procedia PDF Downloads 187
13006 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 176
13005 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 396
13004 Tuning the Microstructure and Mechanical Properties of Fine Recycled Plastic Aggregates in Concrete Using Ethylene-Vinyl Acetate

Authors: Ahmed Al-Mansour, Qiang Zeng

Abstract:

Recycling waste plastics in the form of concrete components, i.e. fine aggregates, has been an attractive topic among the society of civil engineers. Not only does the recycling of plastics reduce the overall cost of concrete production, but it also takes part in solving environmental issues. Nevertheless, the incorporation of recycled plastics into concrete results in an increasing reduction in the mechanical properties of concrete as the percentage of replacement of natural aggregates increases. In order to overcome this reduction, Ethylene-vinyl acetate (EVA) was used as an additive in concrete with recycled plastic aggregates. The aim of this additive is to: 1) increase the interfacial interaction at the interfacial transition zone (ITZ) between plastic pellets and cement matrix, and 2) mitigate the loss in mechanical properties. Three different groups of samples (i.e. cubes and prisms) were tested according to the plastics substituting fine aggregates. 5, 10, and 15% of fine aggregates were substituted for recycled plastic pellets, and 2 – 4% of the cement was substituted for EVA that produces a flexible agent when mixed properly with water. Compressive and tensile strength tests were conducted for the mechanical properties, while SEM and X-CT scan were implemented for further investigation of calcium-silicate-hydrate (C–S–H) formation and ITZ analysis. The optimal amount of plastic particles with EVA is suggested to get the most compact and dense matrix structure according to the results of this study.

Keywords: the durability of concrete, ethylene-vinyl acetate (EVA), interfacial transition zone (ITZ), recycled plastics

Procedia PDF Downloads 165
13003 The Influence of Coarse Aggregate Morphology on Concrete Workability: A Case Study with Algerian Crushed Limestone

Authors: Ahmed Boufedah Badissi, Ahmed Beroual, Farid Boursas

Abstract:

This research aims to elucidate the role of coarse aggregate in influencing the fresh properties of normal-strength concrete. Specifically, it is aimed to identify the optimal gradation of coarse aggregate to enhance workability. While existing literature discusses the impact of aggregate granularity on concrete workability, more numerical data or models need to quantify the relationship between workability, granularity, and coarse aggregate shape. The main objective is to create a model that describes how coarse aggregate morphology contributes to fresh concrete properties. To investigate the effect of coarse aggregate gradation on Normal Strength Concrete (NSC) workability, various combinations of coarse aggregates (4/22.4 mm) were produced in the laboratory, utilizing three elementary classes: finer coarse aggregate 4/8 mm (Fca), medium coarse aggregate 8/16 mm (Mca), and coarser coarse aggregate 16/22.4 mm (Cca). We introduced a factor, FCR (Finer to Coarser coarse aggregate Ratio), as a numerical parameter to provide a quantitative evaluation and more detailed results analysis. Quantitative characterization parameters for coarse aggregate morphology were established, exploring the influence of particle size distribution, specific surface, and aggregate shape on workability. The research findings are significant for establishing correlations between coarse aggregate morphology and concrete properties. FCR emerges as a valuable tool for predicting the impact of aggregate gradation variations on concrete. The results of this study create a valuable database for construction professionals and concrete producers, affirming that the fresh properties of NSC are intricately linked to coarse aggregate morphology, particularly gradation.

Keywords: morphology, coarse aggregate, workability, fresh properties, gradation

Procedia PDF Downloads 41
13002 Influence of Recycled Polymer-Based Aggregates on Mechanical Properties of Polymer Concrete

Authors: Ahmet Kurklu, Abdussamed Sarp, Gokmen Arikan, Akin Eren, Arif Ulu, Ferit Cakir

Abstract:

Our natural resources are diminishing day by day with the needs of the growing world population. There is a danger that these resources will be depleted if they are not used in a controlled manner. As a result of the rapid increase in the consumption of limited natural resources, one of the issues where studies have gained importance is recycling. Many countries have carried out various research and development activities on recycling and reuse to prevent wastage of resources. For sustainable and healthy living, the limited amount of raw material resources in nature should be consumed consciously, and the necessary awareness should be given for recycling activities. One of the sectors where the consumption of raw materials is high is the construction sector. With the changing consumption habits of the evolving technology in the construction sector, the need to use special concrete along with the normal concrete has arisen. With the increasing need for specialty concretes, polymer concrete, which was discovered in the early 1900s, has evolved to the present day. Polymer concretes are special concretes with high strength, water impermeability, resistance to chemical action, and low surface roughness. Thanks to these properties, they find wide applications in many fields such as swimming pools, drainage systems, repair works. In the study, the effect of using recycled aggregates instead of natural aggregates in the production of polymer concrete on the performance of polymer concrete is investigated. In the experiments conducted for this purpose, the use of natural aggregate is reduced at certain rates, and instead, recycled aggregate is added at the same rate. The recycled aggregate to be used in the study is obtained from the polymer concrete drainage channel production facility of Mert Casting Co., Istanbul, Turkey. In order to clearly observe the effect of recycled materials on the product in the study, the other components (resin, hardener, accelerator, and additive) are kept constant in the concrete mix. In the study, fresh and hardened concrete tests are to be carried out on the mixes to be prepared.

Keywords: concrete, mechanical properties, polymer concrete, recycle aggregate

Procedia PDF Downloads 121
13001 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing

Procedia PDF Downloads 382
13000 Seismic Behavior and Loss Assessment of High–Rise Buildings with Light Gauge Steel–Concrete Hybrid Structure

Authors: Bing Lu, Shuang Li, Hongyuan Zhou

Abstract:

The steel–concrete hybrid structure has been extensively employed in high–rise buildings and super high–rise buildings. The light gauge steel–concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a new–type steel–concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high–rise buildings with three different concrete hybrid structures were investigated through finite element software, respectively. The three concrete hybrid structures are reinforced concrete column–steel beam (RC‒S) hybrid structure, concrete–filled steel tube column–steel beam (CFST‒S) hybrid structure, and tubed concrete column–steel beam (TC‒S) hybrid structure. The nonlinear time-history analysis of three high–rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high–rise buildings were superior. Under extremely rare earthquakes, the maximum inter–storey drifts of three high–rise buildings are significantly lower than 1/50. The inter–storey drift and floor acceleration of high–rise building with CFST‒S hybrid structure were bigger than those of high–rise buildings with RC‒S hybrid structure, and smaller than those of high–rise building with TC‒S hybrid structure. Then, based on the time–history analysis results, the post-earthquake repair cost ratio and repair time of three high–rise buildings were predicted through an economic performance analysis method proposed in FEMA‒P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC‒S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.

Keywords: seismic behavior, loss assessment, light gauge steel–concrete hybrid structure, high–rise building, time–history analysis

Procedia PDF Downloads 157
12999 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays

Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze

Abstract:

After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.

Keywords: concrete substrate, surface preparation, overlays, bond tensile strength

Procedia PDF Downloads 438
12998 Pushover Analysis of Reinforced Concrete Beam-Column Joint Strengthening with Ultra High Performance Concrete

Authors: Abdulsamee Halahla, Emad Allout

Abstract:

The purpose of this research is to study the behavior of exterior beam-column joints (BCJs) strengthened with ultra-high performance concrete (UHPC), in terms of the shear strength and maximum displacement using pushover analysis at the tip of the beam. A finite element (F.E) analysis was performed to study three main parameters – the level of the axial load in the column (N), the beam shear reinforcement (Av/s)B, and the effect of using UHPC. The normal concrete at the studied joint region was replaced by UHPC. The model was verified by using experimental results taken from the literature. The results showed that the UHPC contributed to the transference of the plastic hinge from the joint to the beam-column interface. In addition, the strength of the UHPC-strengthened joints was enhanced dramatically from 8% to 38% for the joints subjected to 12.8MPa and zero axial loads, respectively. Moreover, the UHPC contributed in improving the maximum deflection. This improvement amounted to 1% and 176% for the joints subjected to zero and 12.8MPa axial load, respectively.

Keywords: ultra high performance concrete, ductility, reinforced concrete joints, finite element modeling, nonlinear behavior; pushover analysis

Procedia PDF Downloads 113
12997 Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames

Authors: Rohan V. Ambekar, Shrirang N. Tande

Abstract:

The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values.

Keywords: response reduction factor, ductility ratio, base shear, special moment resisting frames

Procedia PDF Downloads 465
12996 Effects of Rice Husk Ash on the Properties of Scrap Tyre Steel Fiber Reinforced High Performance Concrete (RHA-STSFRHAC)

Authors: Isyaka Abdulkadir, Egbe-Ngu Ntui Ogork

Abstract:

This research aims to investigate the effect of Rice Husk Ash (RHA) on Scrap Tyre Steel Fiber Reinforced High Performance Concrete (STSFRHPC). RHA was obtained by control burning of rice husk in a kiln to a temperature of 650-700oC and when cooled sieved through 75µm sieve and characterized. The effect of RHA were investigated on grade 50 STSFRHPC of 1:1.28:1.92 with water cement ratio of 0.39 at additions of Scrap Tyre Steel Fiber (STSF) of 1.5% by volume of concrete and partial replacement of cement with RHA at percentages of 0, 5, 10, 15 and 20. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. Results of RHA-STSFRHPC indicated a reduction in slump and compressive strength with increase in RHA content, while splitting tensile strength increased with RHA replacement up to 10% and reduction in strength above 10% RHA content. The 28 days compressive strength of RHA-STSFRHPC with up to 10% RHA attained the desired characteristic strength of 50N/mm2 and therefore up to 10% RHA is considered as the optimum replacement dosage in STSFRHPC-RHA.

Keywords: compressive strength, high performance concrete, rice husk ash, scrap tyre steel fibers

Procedia PDF Downloads 310
12995 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation

Authors: Q. J. Yang

Abstract:

This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.

Keywords: pad footing, Hilly formation, stability, block works

Procedia PDF Downloads 302
12994 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 360
12993 A New Lateral Load Pattern for Pushover Analysis of RC Frame Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Mohammad Haghbin

Abstract:

Non-linear static analysis, commonly referred to as pushover analysis, is a powerful tool for assessing the seismic response of structures. A suitable lateral load pattern for pushover analysis can bring the results of this simple, quick and low-cost analysis close to the realistic results of nonlinear dynamic analyses. In this research, four samples of 10- and 15 story (two- and four-bay) reinforced concrete frames were studied. The lateral load distribution patterns recommended in FEMA 273/356 guidelines were applied to the sample models in order to perform pushover analyses. The results were then compared to the results obtained from several nonlinear incremental dynamic analyses for a range of earthquakes. Finally, a lateral load distribution pattern was proposed for pushover analysis of medium-rise reinforced concrete buildings based on the results of nonlinear static and dynamic analyses.

Keywords: lateral load pattern, nonlinear static analysis, incremental dynamic analysis, medium-rise reinforced concrete frames, performance based design

Procedia PDF Downloads 455
12992 Study for Utilization of Industrial Solid Waste, Generated by the Discharge of Casting Sand Agglomeration with Clay, Blast Furnace Slag and Sugar Cane Bagasse Ash in Concrete Composition

Authors: Mario Sergio de Andrade Zago, Javier Mazariegos Pablos, Eduvaldo Paulo Sichieri

Abstract:

This research project accomplished a study on the technical feasibility of recycling industrial solid waste generated by the discharge of casting sand agglomeration with clay, blast furnace slag and sugar cane bagasse ash. For this, the plan proposed a methodology that initially establishes a process of solid waste encapsulation, by using solidification/stabilization technique on Portland cement matrices, in which the residuals act as small and large aggregates on the composition of concrete, and later it presents the possibility of using this concrete in the manufacture of concrete pieces (concrete blocks) for paving. The results obtained in this research achieved the objective set with great success, regarding the manufacturing of concrete pieces (blocks) for paving urban roads, whenever there is special vehicle traffic or demands capable of producing accentuated abrasion effects (surpassing the 50 MPa required by the regulation), which probes the technical practicability of using waste from sand casting agglomeration with clay and blast furnace slag used in this study, unlocking usage possibilities for construction.

Keywords: industrial solid waste, solidification/stabilization, Portland cement, reuse, bagasse ash in the sugar cane, concrete

Procedia PDF Downloads 285