Search results for: behavior detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9704

Search results for: behavior detection

9194 Correlation between Consumer Knowledge of the Circular Economy and Consumer Behavior towards Its Application: A Canadian Exploratory Study

Authors: Christopher E. A. Ramsey, Halia Valladares Montemayor

Abstract:

This study examined whether the dissemination of information about the circular economy (CE) has any bearing on the likelihood of the implementation of its concepts on an individual basis. Specifically, the goal of this research study was to investigate the impact of consumer knowledge about the circular economy on their behavior in applying such concepts. Given that our current linear supply chains are unsustainable, it is of great importance that we understand what mechanisms are most effective in encouraging consumers to embrace CE. The theoretical framework employed was the theory of planned behavior (TPB). TPB, with its analysis of how attitude, subjective norms, and perceived behavioral control affect intention, provided an adequate model for testing the effects of increased information about the CE on the implementation of its recommendations. The empirical research consisted of a survey distributed among university students, faculty, and staff at a Canadian University in British Columbia.

Keywords: circular economy, consumer behavior, sustainability, theory of planned behavior

Procedia PDF Downloads 124
9193 Characteristic Matrix Faults for Flight Control System

Authors: Thanh Nga Thai

Abstract:

A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.

Keywords: fault detection and identification, sensor faults, actuator faults, flight control system

Procedia PDF Downloads 422
9192 Behavior, Temperament and Food Intake of Urban Indian Adolescents

Authors: Preeti Khanna, Bani T. Aeri

Abstract:

Background: Recent studies have indicated challenges that hamper health and wellbeing of a vast majority of adolescents in developing countries. Many modifiable factors like behavior and temperament related to food intake among adolescents have not been adequately explored. The aim of the proposed research is to study the impact of behavior and temperament on food intake and diet quality of adolescents. Objectives: In the present study data on dietary behavior and anthropometry of adolescent boys & girls (aged 13-16 years) studying in public schools of Delhi will be gathered to ascertain the quality of diet among adolescent boys and girls and to study the effect of behavior and temperament on diet quality of adolescents. Methods: In total, 400 adolescents will participate in this cross-sectional study. Weight and height of adolescents will be measured and BMI will be calculated. Information will be obtained on their socio-demographic profile and various factors influencing their Food Choices and diet quality such as body image perception, Behavior, temperament, locus of control and parental influence. Expected results: Several direct effects of adolescent traits and behavior on food intake will be observed. Maturational patterns and gender differences in behavior traits will be assessed. By profiling of the behavior and temperament traits, we will have a better understanding of impact of these factors on weight and eating behaviors in overweight/obese or even underweight adolescents. Conclusions: The proposed study will highlight the association of behavioral factors with nutritional status of adolescents. It will also serve as a strategic approach for the obesity prevention and health management policies designed for adolescents.

Keywords: behaviour, temperament, food intake, adolescents

Procedia PDF Downloads 242
9191 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures

Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.

Keywords: ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior

Procedia PDF Downloads 389
9190 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 106
9189 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 25
9188 Analyzing the Significance of Online Purchase Behavior of Tourists for the Development of Online Travel Bookings

Authors: April C. Abalos, Marmie R. Poquiz, Paul Nigel S. Abalos

Abstract:

With the advent of the fourth industrial revolution, everything is becoming possible with just a single click through the internet. What is more exciting is that through the power of the technological advancements, options are readily available in one’s fingertips. These technological advancements have greatly affected the perspectives of people in almost all human endeavors, even in their purchasing behavior. Hence, this study is conceptualized. This aims to identify the significance of the online purchase behavior of tourists for the development of travel bookings and provide knowledge to sellers and understanding major factors towards the online purchase behavior of tourists. Social media applications in booking online were also identified, as well as the profile and the marketing strategies influencing the behavior of individuals in an online travel booking. This study also sought to determine which behavioral intention should be given more attention to know where to exert more effort in winning the hearts of consumers. This study used a descriptive-survey design using an online survey questionnaire to gather real-time responses from the tourists visiting and/or planning to visit the scenic spots in the province of Pangasinan, which are highly reliable to formulate conclusions as deemed necessary.

Keywords: behavior, online purchase, tourists, travel bookings

Procedia PDF Downloads 128
9187 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 254
9186 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 164
9185 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 288
9184 A Model of Critical Consideration of Environmental Education: Concepts, Contexts, and Competencies

Authors: Mohammad Anwar, Hamid Ullah Khan, Shah Waliullah

Abstract:

Recently, environmental education is an essential element in avoiding environmental degradation around the globe that needs new articles and policymakers’ emphasis. Hence, the present article examines the impact of environmental education on environmental knowledge, environmental behavior, and environmental attitudes in Indonesia. The present research also investigated the moderating role of government support in environmental education, environmental knowledge, environmental behavior, and environmental attitude in Indonesia. A questionnaire was used as the primary data collection method. The smart PLS was utilized to test the association among variables and the hypotheses of the study. The results revealed that environmental education had a significant and positive linkage with environmental knowledge, environmental behavior, and environmental attitude in Indonesia. The findings also exposed that government support significantly moderated environmental education, environmental knowledge, and environmental behavior in Indonesia. The findings of this research would provide help to the policymakers in establishing the policies related to environmental education and reducing environmental degradation.

Keywords: environmental education, environmental knowledge, environmental behavior, environmental attitude, government support

Procedia PDF Downloads 96
9183 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review

Authors: Ng Liang Shen, Hau Yuan Wen

Abstract:

Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.

Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS

Procedia PDF Downloads 376
9182 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 243
9181 Mechanistic Insights Into The Change Behavior; Its Relationship With Water Velocity, Nanoparticles, Gut Bacterial Composition, And Its Functional Metabolites

Authors: Mian Adnan Kakakhel, NIshita Narwal, Majid Rasta, Shi Xiaotao

Abstract:

The widespread use of nanoparticles means that they are significantly increasing in the aquatic ecosystem, where they are likely to pose threat to aquatic organism. In particular, the influence of nanoparticles exposure combined with varying water velocities on fish behavior remain poorly understood. Emerging evidences suggested a probable correlation between fish swimming behavior and gut bacterial dysbiosis. Therefore, the current study aimed to investigate the effects of nanomaterials in different water velocities on fish gut bacterial composition, which in results change in fish swimming behavior. The obtained findings showed that the contamination of nanoparticles was reduced as the velocity increased. However, the synergetic effects of nanoparticles and water velocity significantly (p < 0.05) decreased the bacterial composition, which plays a critical role in fish development, metabolism, digestion, enzymes production, and energy production such as Bacteroidetes and Firmicutes. This group of bacterial also support fish in swimming behavior by providing them a significant energy during movement. The obtained findings of this study suggested that the presence of nanoparticles in different water velocities have had a significant correlation with fish gut bacterial dysbiosis, as results the gut dysbiosis had been linked to the change in fish behavior. The study provides an important insight into the mechanisms by which the nanoparticles possibly affect the fish behavior.

Keywords: water velocities, fish behavior, gut bacteria, secondary metabolites, regulation

Procedia PDF Downloads 82
9180 Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand

Authors: Fathi Mohamed Abdrabbo, Khaled Esayed Gaaver, Musab Musa Eldooma

Abstract:

This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.

Keywords: deep foundation, piles, inclined load, pile deformations

Procedia PDF Downloads 149
9179 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 171
9178 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 307
9177 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 220
9176 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: data mining, data science, trajectory, animal behavior

Procedia PDF Downloads 144
9175 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 282
9174 The Interaction of Job Involvement and Organizational Citizenship Behavior on Well-Being

Authors: Yu-Chen Wei

Abstract:

This study integrated the need fulfillment theory and affective event theory to investigate the effects of the interaction of job involvement and organizational citizenship behavior (OCB) on well-being. Data from 196 paired samples of employees and their supervisors in one supplementary school in Taiwan were analyzed. This study found that while neither job involvement nor OCB directly affects well-being, the interaction of job involvement and OCB can predict well-being. The findings of this study suggest that management can assist employees in improving their well-being by balancing job involvement and OCB.

Keywords: job involvement, organizational citizenship behavior, well-being, need fulfillment

Procedia PDF Downloads 91
9173 Factors Related to Protective Behavior on Indoor Pollution among Pregnant Women in Nakhon Pathom Province, Thailand

Authors: Yuri Teraoka, Cheerawit Rattanapan, Aroonsri Mongkolchati

Abstract:

This cross sectional analytic study was carried out to determine factors related to protective behavior on indoor pollution among pregnant women in Nakhon Pathom province, Thailand. A total of 319 pregnant women were enrolled at three antenatal care clinics in community hospital. Data were collected using simple random sampling from April 2015 to May 2015 using a structured self-administration questionnaire by well-trained research assistants. The result showed that around 73% pregnant women showed low level of low protective behavior on indoor pollution. Chi-square and multiple logistic regression were used to examine the factors and protective behavior on indoor pollution. After adjusting for confounding factors, this study found that tobacco smoking before pregnancy (AOR=2.15, 95% CI: 0.78-5.95) and low environmental health hazard (AOR=1.94, 95% CI: 1.09-3.49) were significant factors related to protective behavior on indoor pollution among pregnant women (p-value < 0.05). In conclusion, this study suggested that environmental health education campaign and environmental implementation program among pregnant woman are needed.

Keywords: Thailand, environmental health, protective behavior, pregnant women

Procedia PDF Downloads 364
9172 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 452
9171 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 255
9170 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 26
9169 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 293
9168 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 304
9167 Sport and Exercise Behavior of Students in Suan Sunandha Rajabhat University

Authors: Pimporn Thongmuang

Abstract:

The purpose of this research is to study sport and exercise behavior of students in Suan Sunandha Rajabhat University in September of 2012. The sample group used in this research was a group of regular students in undergraduate school enrolled in faculty of science and technology. This sample group consisted of 1,858 students. The research tool used to collect result was the checklist. The data was calculated by statistical percentage. From the research, it was discovered that most students did exercise in previous month. 71.6% of students exercised by running. 61.1% of students exercised in their neighborhood. 60.4% of students exercised in order to keep fit. 60.2% of students agreed that the result from this research can be educational and inspirational for students in campus in terms of living healthily by exercise.

Keywords: exercise behavior, sport behavior, students, health

Procedia PDF Downloads 470
9166 Investigation on the Acoustical Transmission Path of Additive Printed Metals

Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing

Abstract:

In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.

Keywords: 3D-printed, acoustics, dynamics, impedance

Procedia PDF Downloads 207
9165 Detection of Hepatitis B by the Use of Artifical Intelegence

Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad

Abstract:

Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.

Keywords: detection, hapataties, observation, disesese

Procedia PDF Downloads 156