Search results for: learning attitudes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8362

Search results for: learning attitudes

3022 Paradigm Shift of the World Is Globalization: Identity Crisis, Violence and Cultural War

Authors: Shahla Bukhtair

Abstract:

A paradigm presents a consensus view of a particular or collective community, accepted into by the members of that community, either consciously pronounced or, more likely, simply assumed and not intentionally acknowledged but is articulated. Paradigm shift is based on the behavioral attitude of the community. Change is inexorable. The world is suffering with the innovative creation of globalization. Media boosted this paradigm shift all over the world. Globalization is a vigorous process which impacts differentially on various cultures around the world. The outcome of the globalization is permeates cultural boundaries and in the process results in the spread of Western ideologies and values across the world. The term flourished in 20th century. Globalization is regarded as having substantial impact on such crises through its encouragement of conflicts rather than conciliation; through opportunities of expression, various groups get benefit with it. Identity crisis refers to inflexible mechanism i.e. cultural and political conflicts among polarized groups, which struggle with each other over the definition of a national identity. Violence is not only a kind of physical but it also psychological as well. Due to identity crisis, a person is having an issue of fear, anxiety, and lack of security. Everything has negative and positive aspects. Newspaper columns, magazine articles, films, made-for-TV movies, television special reports, and talk shows are all public arenas where images of political agenda of their own interest are constructed, debated, and reproduced. From these resources, individuals construct their own conceptions of what is normal and acceptable. This bias affects images in the media, and in turn has a negative effect on public development in a society. This paper investigates the relationship between globalization and cultural war, identity crisis and the role of violence. Objectives: - To determine which type of media plays an important role in shaping perceptions and attitudes of public negatively; - To analyze the impact of globalization on identity crisis, violence and global culture (positive and negative).

Keywords: paradigm shift, globalization, identity crisis, cultural war

Procedia PDF Downloads 366
3021 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.

Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes

Procedia PDF Downloads 110
3020 Assessment Literacy Levels of Mathematics Teachers to Implement Classroom Assessment in Ghanaian High Schools

Authors: Peter Akayuure

Abstract:

One key determinant of the quality of mathematics learning is the teacher’s ability to assess students adequately and effectively and make assessment an integral part of the instructional practices. If the mathematics teacher lacks the required literacy to perform classroom assessment roles, the true trajectory of learning success and attainment of curriculum expectations might be indeterminate. It is therefore important that educators and policymakers understand and seek ways to improve the literacy level of mathematics teachers to implement classroom assessments that would meet curriculum demands. This study employed a descriptive survey design to explore perceived levels of assessment literacy of mathematics teachers to implement classroom assessment with the school based assessment framework in Ghana. A 25-item classroom assessment inventory on teachers’ assessment scenarios was adopted, modified, and administered to a purposive sample of 48 mathematics teachers from eleven Senior High Schools. Seven other items were included to further collect data on their self-efficacy towards assessment literacy. Data were analyzed using descriptive and bivariate correlation statistics. The result shows that, on average, 48.6% of the mathematics teachers attained standard levels of assessment literacy. Specifically, 50.0% met standard one in choosing appropriate assessment methods, 68.3% reached standard two in developing appropriate assessment tasks, 36.6% reached standard three in administering, scoring, and interpreting assessment results, 58.3% reached standard four in making appropriate assessment decisions, 41.7% reached standard five in developing valid grading procedures, 45.8% reached standard six in communicating assessment results, and 36.2 % reached standard seven by identifying unethical, illegal and inappropriate use of assessment results. Participants rated their self-efficacy belief in performing assessments high, making the relationships between participants’ assessment literacy scores and self-efficacy scores weak and statistically insignificant. The study recommends that institutions training mathematics teachers or providing professional developments should accentuate assessment literacy development to ensure standard assessment practices and quality instruction in mathematics education at senior high schools.

Keywords: assessment literacy, mathematics teacher, senior high schools, Ghana

Procedia PDF Downloads 133
3019 Factors Promoting French-English Tweets in France

Authors: Taoues Hadour

Abstract:

Twitter has become a popular means of communication used in a variety of fields, such as politics, journalism, and academia. This widely used online platform has an impact on the way people express themselves and is changing language usage worldwide at an unprecedented pace. The language used online reflects the linguistic battle that has been going on for several decades in French society. This study enables a deeper understanding of users' linguistic behavior online. The implications are important and allow for a rise in awareness of intercultural and cross-language exchanges. This project investigates the mixing of French-English language usage among French users of Twitter using a topic analysis approach. This analysis draws on Gumperz's theory of conversational switching. In order to collect tweets at a large scale, the data was collected in R using the rtweet package to access and retrieve French tweets data through Twitter’s REST and stream APIs (Application Program Interface) using the software RStudio, the integrated development environment for R. The dataset was filtered manually and certain repetitions of themes were observed. A total of nine topic categories were identified and analyzed in this study: entertainment, internet/social media, events/community, politics/news, sports, sex/pornography, innovation/technology, fashion/make up, and business. The study reveals that entertainment is the most frequent topic discussed on Twitter. Entertainment includes movies, music, games, and books. Anglicisms such as trailer, spoil, and live are identified in the data. Change in language usage is inevitable and is a natural result of linguistic interactions. The use of different languages online is just an example of what the real world would look like without linguistic regulations. Social media reveals a multicultural and multilinguistic richness which can deepen and expand our understanding of contemporary human attitudes.

Keywords: code-switching, French, sociolinguistics, Twitter

Procedia PDF Downloads 137
3018 An E-coaching Methodology for Higher Education in Saudi Arabia

Authors: Essam Almuhsin, Ben Soh, Alice Li, Azmat Ullah

Abstract:

It is widely accepted that university students must acquire new knowledge, skills, awareness, and understanding to increase opportunities for professional and personal growth. The study reveals a significant increase in users engaging in e-coaching activities and a growing need for it during the COVID-19 pandemic. The paper proposes an e-coaching methodology for higher education in Saudi Arabia to address the need for effective coaching in the current online learning environment.

Keywords: role of e-coaching, e-coaching in higher education, Saudi higher education environment, e-coaching methodology, the importance of e-coaching

Procedia PDF Downloads 106
3017 Critical Thinking in the Moroccan Textbooks of English: Ticket to English as a Case Study

Authors: Mohsine Jebbour

Abstract:

The ultimate aim of this study was to analyze a second-year baccalaureate textbook of English to see to what extent it includes elements of critical thinking. A further purpose was to assess the extent to which the teachers’ teaching practices help students develop some degree of critical thinking. The literature on critical thinking indicated that all the writers agree that critical thinking is skilled and dispositional oriented, and most of the definitions highlight the skill and disposition to select, collect, analyze and evaluate information effectively. In this study, two instruments were used, namely content analysis and questionnaire to ensure validity and reliability. The sample of this study, on the one hand, was a second year textbook of English, namely Ticket to English. The process of collecting data was carried out through designing a checklist to analyze the textbook of English. On the other hand, high school students (second baccalaureate grade) and teachers of English constituted the second sample. Two questionnaires were administered—One was completed by 28 high school teachers (18 males and10 females), and the other was completed by 51 students (26 males and 25 females) from Fez, Morocco. The items of the questionnaire tended to elicit both qualitative and quantitative data. An attempt was made to answer two research questions. One pertained to the extent to which the textbooks of English contain critical thinking elements (Critical thinking skills and dispositions, types of questions, language learning strategies, classroom activities); the second was concerned with whether the teaching practices of teachers of English help improve students’ critical thinking. The results demonstrated that the textbooks of English include elements of critical thinking, and the teachers’ teaching practices help the students develop some degree of critical thinking. Yet, the textbooks do not include problem-solving activities and media analysis and 86% of the teacher-respondents tended to skip activities in the textbooks, mainly the units dealing with Project Work and Study Skills which are necessary for enhancing critical thinking among the students. Therefore, the textbooks need to be designed around additional activities and the teachers are required to cover the units skipped so as to make the teaching of critical thinking effective.

Keywords: critical thinking, language learning strategies, language proficiency, teaching practices

Procedia PDF Downloads 610
3016 Gender-Based Differences in the Social Judgment of Hungarian Politicians' Sex Scandals

Authors: Sara Dalma Galgoczi, Judith Gabriella Kengyel

Abstract:

Sex scandals are quite an engaging topic to work with, especially with their judgment in society. Most people are interested in other people's lives, specifically in public figures' such as celebrities or politicians, because ordinary people feel like they have the right to know more things about the famous and notorious ones than they would probably willing to share. Intimacy and sexual acts aren't exceptions; moreover, sexuality is one of the central interests of humans ever since. Besides, knowing and having an opinion about any kind of scandal can change even whole social groups or classes estimation of anyone. This study aims to research the social judgment of some Hungarian politicians' sex scandals and asks important questions like diverse public opinions in the light of gender or delegates’ abuse of power. Considering that this study is about collecting and evaluating opinions from the public, and no one before researched and published this exact topic and cases, an online survey was created. In the survey were different sections. We collected data about party-preference, conservativism-liberalism scale; then we used the following questionnaires: from Zero-sum perspective with regard to gender equality (Ruthig, Kehn, Gamblin, Vanderzanden & Jones, 2017), Ambivalent Sexism Inventory (ASI; Glick & Fiske, 1996), Ambivalence Toward Men Inventory (AMI; Glick & Fiske, 1999). Finally, 5 short summaries were presented about five Hungarian politicians' sex scandal cases (3 males, 2 females) from the recent past. These stories were followed by questions about their opinion of the party and attitudes towards the parties' reactions to the cases. We came to the conclusion that people are more permissive with the scandals of men, and benevolent sexism and ambivalence towards men mediate this relation. Men tend to see these cases as part of politicians' private lives more than women. Party preference had a significant effect - people tend to pass a sentence the delegates of the opposing parties, and they rather release the delegates of their preferred party.

Keywords: sex scandal, sexism, social judgement, politician

Procedia PDF Downloads 122
3015 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
3014 Women Entrepreneuship in Croatia: Issues and Policies

Authors: Marko Kolakovic, Mihaela Mikic, Martina Taborin

Abstract:

Women entrepreneurship is often regarded as the unused economical potential in many countries, including Republic of Croatia. Although women represent a majority in the population, they are still a minority in the field of entrepreneurship and face many challenges in fulfilling their entrepreneurship potential. The reasons are often hided in historical distorted perceptions about value, credibility, competitiveness, responsibility and knowledge which women have, or can have. This is significant for at least two reasons. First, in terms of global economic crisis, the economy needs more quality, more skilled and educated people willing to face entrepreneurial challenges and create new jobs, new opportunities and higher living standards. Second, in the entrepreneurial activity, women finally have a chance to highlight their own abilities, such as knowledge, relentless work, organizational skills, communication and negotiation skills, responsibility, flexibility, etc., in order to insure their economic independence, for a better social position, and to increase confidence and faith in their own abilities. This paper empirically analyses characteristics of women entrepreneurship in Croatia and conducted policies for it improvement. An empirical research was conducted with the goal of discovering real life experiences and attitudes of Croatian women entrepreneurs. Results show that Croatian women entrepreneurs are usually highly educated, have previous work experience and operate in service sector, due to lower need for start-up capital. The biggest obstacle on their entrepreneurial path represents government bureaucracy. Although the number of women entrepreneurs is rising today and the gap between male and women entrepreneurs in Croatia, as well as women entrepreneurship levels lower than the European average, we believe that there is still a long way to reach potential and successful women entrepreneurship development. Research showed that by breaking down the barriers as access to finance, education investments, knowledge, skills and confidence development, women will be able to accomplish more significant and more efficient entrepreneurial outcome.

Keywords: Croatia, policy, SMEs, women entrepreneurial strategy, women entrepreneurship

Procedia PDF Downloads 323
3013 Achieving Maximum Performance through the Practice of Entrepreneurial Ethics: Evidence from SMEs in Nigeria

Authors: S. B. Tende, H. L. Abubakar

Abstract:

It is acknowledged that small and medium enterprises (SMEs) may encounter different ethical issues and pressures that could affect the way in which they strategize or make decisions concerning the outcome of their business. Therefore, this research aimed at assessing entrepreneurial ethics in the business of SMEs in Nigeria. Secondary data were adopted as source of corpus for the analysis. The findings conclude that a sound entrepreneurial ethics system has a significant effect on the level of performance of SMEs in Nigeria. The Nigerian Government needs to provide both guiding and physical structures; as well as learning systems that could inculcate these entrepreneurial ethics.

Keywords: culture, entrepreneurial ethics, performance, SME

Procedia PDF Downloads 383
3012 Examining the Teaching and Learning Needs of Science and Mathematics Educators in South Africa

Authors: M. Shaheed Hartley

Abstract:

There has been increasing pressure on education researchers and practitioners at higher education institutions to focus on the development of South Africa’s rural and peri-urban communities and improving their quality of life. Many tertiary institutions are obliged to review their outreach interventions in schools. To ensure that the support provided to schools is still relevant, a systemic evaluation of science educator needs is central to this process. These prioritised needs will serve as guide not only for the outreach projects of tertiary institutions, but also to service providers in general so that the process of addressing educators needs become coordinated, organised and delivered in a systemic manner. This paper describes one area of a broader needs assessment exercise to collect data regarding the needs of educators in a district of 45 secondary schools in the Western Cape Province of South Africa. This research focuses on the needs and challenges faced by science educators at these schools as articulated by the relevant stakeholders. The objectives of this investigation are two-fold: (1) to create a data base that will capture the needs and challenges identified by science educators of the selected secondary schools; and (2) to develop a needs profile for each of the participating secondary schools that will serve as a strategic asset to be shared with the various service providers as part of a community of practice whose core business is to support science educators and science education at large. The data was collected by a means of a needs assessment questionnaire (NAQ) which was developed in both actual and preferred versions. An open-ended questionnaire was also administered which allowed teachers to express their views. The categories of the questionnaire were predetermined by participating researchers, educators and education department officials. Group interviews were also held with the science teachers at each of the schools. An analysis of the data revealed important trends in terms of science educator needs and identified schools that can be clustered around priority needs, logistic reasoning and educator profiles. The needs database also provides opportunity for the community of practice to strategise and coordinate their interventions.

Keywords: needs assessment, science and mathematics education, evaluation, teaching and learning, South Africa

Procedia PDF Downloads 183
3011 Assessing Adoption Trends of Mukau (Melia volkensii (Gürke)) Enterprises in Eastern and Coastal Regions of Kenya

Authors: Lydia Murugi Mugendi

Abstract:

The promotion of tree growing as a lucrative enterprise is the focus of this paper as management practices have shifted focus from protection of natural forest resources to community/government partnerships with the aim of resource conservation, management and increase of on-farm tree growing. Using KEFRI as (the source) of information pertaining Melia volkensii (the medium or message) being transferred, this paper investigates the current perception towards forestry and the behavioural attitudes of recipients of forest intervention activities. The two objectives explored in this paper are to find out the level of adoption of Mukau in Kitui, Kibwezi and Samburu/Taru and secondly, to find out the characteristics of the adoption process between Kitui, Kibwezi and Samburu/Taru. The methodologies used during data collection were participatory rural appraisal tools in conjunction with the social survey questionnaires. Simple random sampling and snowball sampling were used to identify respondents within the three target sites and analysis was done using SPSS. Results of the study of indicating that adoption rates of the Mukau in Samburu/Taru, where forestry-related activities were introduced within the past one decade had significantly increase despite initial resistance. The other areas, which had benefited from numerous decades of intense forestry extension projects and activities, indicated a decline in re-adoption rates of Mukau as an enterprise. This study has brought out the reality of adoption trends and state of Mukau population within the three counties while providing a glimpse towards the communities’ perception in regards to adoption of forestry and other environmental innovations. The outcome of the study is to provide a guideline for extension/ dissemination officers in KEFRI and related stakeholders to promote seamless cohesive interaction between the recipient communities of the proposed interventions.

Keywords: adoption, innovation, enterprise, extension, DOI Theory

Procedia PDF Downloads 113
3010 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China

Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek

Abstract:

Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.

Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates

Procedia PDF Downloads 285
3009 The Relationship between Resilient Qualities and Health Management in Video Testimonials of Adolescents and Young Adults with Cancer

Authors: A. Sainvil, J. Mallela, L. M. Pereira

Abstract:

Adolescents and young adults (AYA) diagnosed with cancer are tasked with managing their health through treatment, a time when reliance on and independence from parents may change in unexpected ways. Resilience allows patients to cope and manage their own health through treatment, promoting motivation and a healthier lifestyle. The film acts as a source of reflection through the cancer journey, which may have an impact on how patients cope. The current research investigated relationships between resilient linguistic qualities of the video narratives and attitudes toward personal health management. N=24 patients diagnosed between ages 11-18 were recruited. First, participants provided demographic information, then made a video testimonial about their cancer experience. After filming, participants then completed a questionnaire on the perceived benefits for themselves and others for making the video. Videos were transcribed and analyzed for thematic content via codebook and for linguistic qualities, indicating resilience with the use of the Linguistic Inquiry and Word Count Analysis Program (LIWC). Linear regressions were then calculated to explore relationships between resilient qualities, thematic content, and participants’ perceptions of their medical team and willingness to care for themselves. Participants who spoke with greater narrator connectedness were more likely to change their view of their medical team (β=.628 p=.034). When a participant believed that providers were likely to view their video, they were marginally more likely to want to take better care of themselves (β=.367, p=.078). Participants who spoke in depth about their health reported higher intention to take better care of themselves (β=.785, p=.033). AYAs with cancer who showcased certain resilient qualities within their narrative were more likely to consider taking better care of themselves. Additionally, the more patients reflected on their health, the more they wanted to take better care of themselves. These relationships were stronger when a patient believed that a provider would watch their video. Study findings highlight the utility of film in uncovering aspects of resilience and coping that may lead to healthier behaviors in AYAs with cancer.

Keywords: adolescents, cancer, resilience, health management

Procedia PDF Downloads 89
3008 Game “EZZRA” as an Innovative Solution

Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan

Abstract:

There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.

Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation

Procedia PDF Downloads 76
3007 Contextualization and Localization: Acceptability of the Developed Activity Sheets in Science 5 Integrating Climate Change Adaptation

Authors: Kim Alvin De Lara

Abstract:

The research aimed to assess the level of acceptability of the developed activity sheets in Science 5 integrating climate change adaptation of grade 5 science teachers in the District of Pililla school year 2016-2017. In this research, participants were able to recognize and understand the importance of environmental education in improving basic education and integrating them in lessons through localization and contextualization. The researcher conducted the study to develop a material to use by Science teachers in Grade 5. It served also as a self-learning resource for students. The respondents of the study were the thirteen Grade 5 teachers teaching Science 5 in the District of Pililla. Respondents were selected purposively and identified by the researcher. A descriptive method of research was utilized in the research. The main instrument was a checklist which includes items on the objectives, content, tasks, contextualization and localization of the developed activity sheets. The researcher developed a 2-week lesson in Science 5 for 4th Quarter based on the curriculum guide with integration of climate change adaptation. The findings revealed that majority of respondents are female, 31 years old and above, 10 years above in teaching science and have units in master’s degree. With regards to the level of acceptability, the study revealed developed activity sheets in science 5 is very much acceptable. In view of the findings, lessons in science 5 must be contextualized and localized to improve to make the curriculum responds, conforms, reflects, and be flexible to the needs of the learners, especially the 21st century learners who need to be holistically and skillfully developed. As revealed by the findings, it is more acceptable to localized and contextualized the learning materials for pupils. Policy formation and re-organization of the lessons and competencies in Science must be reviewed and re-evaluated. Lessons in science must also be integrated with climate change adaptation since nowadays, people are experiencing change in climate due to global warming and other factors. Through developed activity sheets, researcher strongly supports environmental education and believes this to serve as a way to instill environmental literacy to students.

Keywords: activity sheets, climate change adaptation, contextualization, localization

Procedia PDF Downloads 326
3006 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
3005 Attracting the North Holidaymaker to Ireland Using Social Media Channels: An Irish Marketing Strategy

Authors: Colm Barcoe, Garvan Whelan

Abstract:

In tourism, engagement has been found to boost awareness of a destination and subsequently increase visits. Customer engagement in this industry is now facilitated by social media. This phenomenon is not very well researched in relation to Ireland and the North American tourism market. The objective of this paper is to present research findings on two related topics; the first is an investigation into the effectiveness of social media channels as components of a digital marketing campaign when promoting Ireland as a brand in North America. Secondly, this study reveals how Irish marketers have embraced social media platforms and channels with an innovative strategy that has successfully attracted growing numbers of US and Canadian holidaymakers to Ireland. A range of methodological approaches was applied in order to achieve the study’s objective. The methods used were both quantitative and qualitative, and the data was obtained from both Irish marketers and North American holidaymakers. Surveys of these holidaymakers in the pre, during and post-trip phases revealed their attitudes towards social media and Ireland as a destination. Semi-structured interviews with those responsible for implementing relationship marketing strategies for this segment provide insight into the effectiveness of social media when used to capitalise on the cultural link between Ireland and North America. Further analysis involved using Nvivo 11+ software to investigate the activities of the Irish destination marketer (DMO) and the engagement of the US and Canadian audiences through a detailed study of social media platform content. The findings from this investigation will extend an under-researched body of literature pertaining to Ireland as a destination and the successful digital marketing campaigns that have achieved exponential growth in this sector over the past five years. The empirical evidence presented also illustrates how the innovative use of social media has assisted the DMO to engage with the North American holidaymaker as part of an effective digital marketing strategy.

Keywords: channels, digital, engagement, marketing, strategies

Procedia PDF Downloads 156
3004 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 169
3003 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 172
3002 Understanding Risky Borrowing Behavior among Young Consumers: An Empirical Study

Authors: T. Hansen

Abstract:

Many consumers are uncertain of what financial borrowing behavior may serve their interests in the best way. This is important since consumers’ risky financial decisions may not only negatively affect their short-term liquidity but may haunt them for years after they are made. Obviously, this is especially critical for young adults who often carry large amounts of student loans or credit card debt, which in turn may hinder their future ability to obtain financial healthiness. Even though factors such as financial knowledge, attitudes towards risk, gender, and motivations of borrowing, among others, are known to influence consumer borrowing behavior, no existing model comprehensibly describes the mechanisms behind young adults’ risky borrowing behavior. This is unfortunate since a better understanding of the relationships between such factors and young adults’ risky borrowing behavior may be of value to financial service providers and financial authorities aiming to improve young adults’ borrowing behavior. This research extends prior research by developing a conceptual framework for the purpose of understanding young adults’ risky borrowing behavior. The study is based on two survey samples comprising 488 young adults aged 18-25 who have not obtained a risky loan (sample 1) and 214 young adults aged 18-25 who already have obtained a risky loan (sample 2), respectively. The results suggest several psychological, sociological, and behavioral factors that may influence young adults’ intentional risky borrowing behavior, which in turn is shown to affect actualized risky borrowing behavior. We also found that the relationship between intentional risky borrowing behavior and actualized risky borrowing behavior is negatively moderated by perceived risk – but not by perceived complexity. In particular, the results of this study indicate that public policy makers, banks and financial educators should seek to eliminate less desirable social norms on how to behave financially. In addition, they should seek to enhance young adults’ risky borrowing perceived risk, thereby preventing that intentional risky borrowing behavior translates into actualized risky behavior.

Keywords: financial services, risky borrowing behavior, young adults, financial knowledge, social norms, perceived risk, financial trust, public financial policy

Procedia PDF Downloads 265
3001 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya

Authors: Madrine King'endo

Abstract:

This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.

Keywords: dysgraphia, writing, language, performance

Procedia PDF Downloads 154
3000 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 129
2999 Quality Assurance in Higher Education: Doha Institute for Graduate Studies as a Case Study

Authors: Ahmed Makhoukh

Abstract:

Quality assurance (QA) has recently become a common practice, which is endorsed by most Higher Education (HE) institutions worldwide, due to the pressure of internal and external forces. One of the aims of this quality movement is to make the contribution of university education to socio-economic development highly significant. This entails that graduates are currently required have a high-quality profile, i.e., to be competent and master the 21st-century skills needed in the labor market. This wave of change, mostly imposed by globalization, has the effect that university education should be learner-centered in order to satisfy the different needs of students and meet the expectations of other stakeholders. Such a shift of focus on the student learning outcomes has led HE institutions to reconsider their strategic planning, their mission, the curriculum, the pedagogical competence of the academic staff, among other elements. To ensure that the overall institutional performance is on the right way, a QA system should be established to assume this task of checking regularly the extent to which the set of standards of evaluation are strictly respected as expected. This operation of QA has the advantage of proving the accountability of the institution, gaining the trust of the public with transparency and enjoying an international recognition. This is the case of Doha Institute (DI) for Graduate Studies, in Qatar, the object of the present study. The significance of this contribution is to show that the conception of quality has changed in this digital age, and the need to integrate a department responsible for QA in every HE institution to ensure educational quality, enhance learners and achieve academic leadership. Thus, to undertake the issue of QA in DI for Graduate Studies, an elite university (in the academic sense) that focuses on a small and selected number of students, a qualitative method will be adopted in the description and analysis of the data (document analysis). In an attempt to investigate the extent to which QA is achieved in Doha Institute for Graduate Studies, three broad indicators will be evaluated (input, process and learning outcomes). This investigation will be carried out in line with the UK Quality Code for Higher Education represented by Quality Assurance Agency (QAA).

Keywords: accreditation, higher education, quality, quality assurance, standards

Procedia PDF Downloads 147
2998 Subtitling in the Classroom: Combining Language Mediation, ICT and Audiovisual Material

Authors: Rossella Resi

Abstract:

This paper describes a project carried out in an Italian school with English learning pupils combining three didactic tools which are attested to be relevant for the success of young learner’s language curriculum: the use of technology, the intralingual and interlingual mediation (according to CEFR) and the cultural dimension. Aim of this project was to test a technological hands-on translation activity like subtitling in a formal teaching context and to exploit its potential as motivational tool for developing listening and writing, translation and cross-cultural skills among language learners. The activities proposed involved the use of professional subtitling software called Aegisub and culture-specific films. The workshop was optional so motivation was entirely based on the pleasure of engaging in the use of a realistic subtitling program and on the challenge of meeting the constraints that a real life/work situation might involve. Twelve pupils in the age between 16 and 18 have attended the afternoon workshop. The workshop was organized in three parts: (i) An introduction where the learners were opened up to the concept and constraints of subtitling and provided with few basic rules on spotting and segmentation. During this session learners had also the time to familiarize with the main software features. (ii) The second part involved three subtitling activities in plenum or in groups. In the first activity the learners experienced the technical dimensions of subtitling. They were provided with a short video segment together with its transcription to be segmented and time-spotted. The second activity involved also oral comprehension. Learners had to understand and transcribe a video segment before subtitling it. The third activity embedded a translation activity of a provided transcription including segmentation and spotting of subtitles. (iii) The workshop ended with a small final project. At this point learners were able to master a short subtitling assignment (transcription, translation, segmenting and spotting) on their own with a similar video interview. The results of these assignments were above expectations since the learners were highly motivated by the authentic and original nature of the assignment. The subtitled videos were evaluated and watched in the regular classroom together with other students who did not take part to the workshop.

Keywords: ICT, L2, language learning, language mediation, subtitling

Procedia PDF Downloads 416
2997 Comparison between Approaches Used in Two Walk About Projects

Authors: Derek O Reilly, Piotr Milczarski, Shane Dowdall, Artur Hłobaż, Krzysztof Podlaski, Hiram Bollaert

Abstract:

Learning through creation of contextual games is a very promising way/tool for interdisciplinary and international group projects. During 2013 and 2014 we took part and organized two intensive students projects in different conditions. The projects enrolled 68 students and 12 mentors from 5 countries. In the paper we want to share our experience how to strengthen the chances to succeed in short (12-15 days long) student projects. In our case almost all teams prepared working prototype and the results were highly appreciated by external experts.

Keywords: contextual games, mobile games, GGULIVRR, walkabout, Erasmus intensive programme

Procedia PDF Downloads 502
2996 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 325
2995 Black Masculinity, Media Stereotyping And Its Influence on Policing in the United States: A Functionalist Perspective

Authors: Jack Santiago Monell

Abstract:

In America, misrepresentations of black males have been perpetuated throughout the history of popular culture. Because of these narratives, varying communities have developed biases and stereotypes about what black male masculinity represents and more importantly, how they respond to them. The researcher explored the perspectives of police officers in the following states, Maryland, Pennsylvania, and North Carolina. Because of the nature of police and community relations, and national attention to high profile cases, having officers provide context into how black males are viewed from their lens, was critical while expanding on the theoretical explanations to describe attitudes towards police confrontations. As one of the objectives was to identify specific themes relevant to why police officers may view African American males differently, hence, responding more aggressively, this proved to be the most beneficial method of initial analysis to identify themes. The following nodes (appearance, acting suspicious/ troublesome behavior, upbringing about black males, excessive force) were identified to analyze the transcripts to discern associations. The data was analyzed through NVivo 11, and several themes resulted to elaborate on the data received. In analyzing the data, four themes were identified: appearance, acting suspicious/ troublesome behavior, upbringing about black males, and excessive force. The data conveyed that continuous stereotypes about African American men will ultimately result in excessive use of force or pervasive shootings, albeit the men are armed or unarmed. African American males are consistently targeted because of their racial makeup and appearance over any other probable circumstances. As long as racial bias and stereotypical practices continue in policing, African American males will endlessly be unjustly targeted and at times, the victims of violent encounters with police officers in the United States.

Keywords: African American males, police perceptions, masculinity, popular culture

Procedia PDF Downloads 113
2994 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
2993 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159