Search results for: traditional scheduling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7091

Search results for: traditional scheduling algorithms

1781 Expounding the Evolution of the Proto-Femme Fatale and Its Correlation with the New Woman: A Close Study of David Mamet's Oleanna

Authors: Silvia Elias

Abstract:

The 'Femme Fatale' figure has become synonymous with a mysterious and seductive woman whose charms captivate her lovers into bonds of irresistible desire, often leading them to compromise or downfall. Originally, a Femme Fatale typically uses her beauty to lead men to their destruction but in modern literature, she represents a direct attack on traditional womanhood and the nuclear family as she refuses to abide by the pillars of mainstream society creating an image of a strong independent woman who defies the control of men and rejects the institution of the family. This research aims at discussing the differences and similarities between the femme fatale and the New Woman and how they are perceived by the audience. There is often confusion between the characteristics that define a New Woman and a Femme Fatale since both women desire independence, challenge typical gender role casting, push against the limits of the patriarchal society and take control of their sexuality. The study of the femme fatale remains appealing in modern times because the fear of gender equality gives life to modern femme fatale versions and post-modern literary works introduce their readers to new versions of the deadly seductress. One that does not fully depend on her looks to destroy men. The idea behind writing this paper was born from reading David Mamet's two-character play Oleanna (1992) and tracing the main female protagonist/antagonist's transformation from a helpless inarticulate girl into a powerful controlling negotiator who knows how to lead a bargain and maintain the upper hand.

Keywords: Circe, David, Eve, evolution, feminist, femme fatale, gender, Mamet, new, Odysseus, Oleanna, power, Salome, schema, seduction, temptress, woman

Procedia PDF Downloads 455
1780 Restructuring and Revitalising School Leadership Philosophy in Nepal: Embracing Contextual and Equitable Approaches

Authors: Shankar Dhakal, Andrew Jones, Geoffrey W. Lummis

Abstract:

The Federal Democratic Republic of Nepal is a linguistically, culturally, and ethnically diverse country with approximately 123 different spoken languages that represent several ethnic, cultural, and religious groups of people. With a population of about 30 million, long-standing disparities and inequalities in access and achievement in education have constantly been challenging to provide equitable educational opportunities for all students. While the new constitution of federal Nepal (2015) stipulates that all schools serve the interests of diverse communities, leadership practices have failed to adopt local contextual sensitivities, leading to traditional, authoritarian approaches and entrenched inequalities. However, little is known about how Nepali secondary school principals can adapt and implement context-responsive and equitable strategies to ensure equity and inclusiveness in its enormously diverse socio-cultural contexts. To fill this gap, this study explores how educational leadership approaches and philosophies are transformed using a multi-case automated/ethnographic research methodology underpinned by the paradigm of critical constructivism. This paper reconstructs to see if school leadership in Nepal can produce more equitable and contextual outcomes. The results of this study highlight the need for a paradigm shift and the adoption of innovative leadership approaches that foster humility, empathy, and compassion in school leaders to achieve better school outcomes. This research provides valuable insights into existing literary gaps and provides guidance for future school leadership policies and practices at the personal, cultural, and political levels.

Keywords: school leadership, auto/ethnography, equitable and context-responsive leadership, Nepal

Procedia PDF Downloads 74
1779 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan

Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette

Abstract:

Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.

Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers

Procedia PDF Downloads 263
1778 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka

Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor

Abstract:

The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.

Keywords: microgrid, energy efficiency, sustainability, energy security

Procedia PDF Downloads 375
1777 A Case-Study Analysis on the Necessity of Testing for Cyber Risk Mitigation on Maritime Transport

Authors: Polychronis Kapalidis

Abstract:

In recent years, researchers have started to turn their attention to cyber security and maritime security independently, neglecting, in most cases, to examine the areas where these two critical issues are intertwined. The impact of cybersecurity issues on the maritime economy is emerging dramatically. Maritime transport and all related activities are conducted by technology-intensive platforms, which today rely heavily on information systems. The paper’s argument is that when no defense is completely effective against cyber attacks, it is vital to test responses to the inevitable incursions. Hence, preparedness in the form of testing existing cybersecurity structure via different tools for potential attacks is vital for minimizing risks. Traditional criminal activities may further be facilitated and evolved through the misuse of cyberspace. Kidnap, piracy, fraud, theft of cargo and imposition of ransomware are the major of these activities that mainly target the industry’s most valuable asset; the ship. The paper, adopting a case-study analysis, based on stakeholder consultation and secondary data analysis, namely policy and strategic-related documentation, presents the importance of holistic testing in the sector. Arguing that poor understanding of the issue leads to the adoption of ineffective policies the paper will present the level of awareness within the industry and assess the risks and vulnerabilities of ships to these cybercriminal activities. It will conclude by suggesting that testing procedures must be focused on three main pillars within the maritime transport sector: the human factor, the infrastructure, and the procedures.

Keywords: cybercrime, cybersecurity, organized crime, risk mitigation

Procedia PDF Downloads 160
1776 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 65
1775 Elucidation of Mechanism of Action of Antidepressant-Like Effect of Valeriana wallichii Maaliol Chemotype in Mice

Authors: Sangeeta Pilkhwal Sah, C. S. Mathela, Kanwaljit Chopra

Abstract:

Valeriana wallichii DC, an ayurvedic traditional medicine, popularly named as Indian valerian exist as three chemotypes. GC-MS analysis of V. wallichii essential oil in present study showed maaliol as the major constituent followed by the presence of β-gurjunene, acoradiene, guaiol and α-santalene. The results thus confirmed it to be a maaliol chemotype. Further, the antidepressant-like effect of root essential oil (10, 20 and 40 mg/kg p.o.) was investigated in both acute and chronic treatment study using forced swim test in mice. Single administration of different doses produced an inverted U shaped curve and significantly inhibited the immobility period (39.7% and 58%) at doses 10 and 40 mg/kg respectively. Standard drug imipramine significantly decreased immobility period (59.8%). None of the doses altered locomotor activity except a significant decrease of 44.9% was observed with 40 mg/kg (p < 0.05). Similarly, daily administration of essential oil for 14 days produced a dose dependent effect with significantly reduced immobility period (70.9%) at 40 mg/kg dose only whereas imipramine produced 86% decrease (p < 0.05). The neurotransmitter levels in mouse brain were estimated on day 14 after the behavioral study. Significant increase in the level of norepinephrine (10%) and dopamine (23%) (p < 0.05) was found at 40 mg/kg dose, while no change was observed at 10 and 20 mg/kg doses. The antidepressant-like effect of essential oil (40 mg/kg) was prevented by pretreatment of mice with L-arginine (750 mg/kg i.p.) and sildenafil (5 mg/kg i.p). On the contrary, pretreatment of mice with L-NAME (10 mg/kg i.p.) or methylene blue (10 mg/kg i.p.) potentiated the antidepressant action of essential oil (20 mg/kg). The findings thus demonstrated that nitric oxide pathway is involved in mediating antidepressant like effect of essential oil from this chemotype.

Keywords: Valeriana wallichii DC chemotype, essential oil, forced swim test, nitric oxide modulators, neurotransmitters

Procedia PDF Downloads 298
1774 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 75
1773 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 24
1772 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
1771 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 91
1770 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application

Authors: Mamta Bulla, Vinay Kumar

Abstract:

The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.

Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor

Procedia PDF Downloads 11
1769 Sexual Behaviors and Its Predictors among Iranian Women in Iran: A Cross-Sectional Study

Authors: Zahra Karimian, Effat Merghati Khoei, Raziyeh Maasoumi

Abstract:

Background: Women's sexual well-being is center of focus in the field of sexology. Study of sexual behavior and investigating its predictors is important in women's health promotion. Objectives: This study aimed to explore the components of sexual behaviors and their possible associations with the women's demographic. Methods: A National Sexual Behavior Assessment Questionnaire was administered to 500 women ages 15 to 45 who referred to the public health centers seeking for health care services. The associations with demographic were examined. Results: From all participant, 31.8% of women obtain high score in the sexual capacity 21.2% in sexual motivation and 0.2% in sexual function. In sexual script component, 86.2% of women were holding traditional beliefs toward sexual behaviors; the majority (91.5%) of women believed in mutual and relational sexuality, 83.4% believed in androcentricity (male-dominated sexuality). Pearson correlation test showed significant positive correlations between sexual capacity, motivation, function and sexual script (p < 0.05). Regression model showed that sexual capacity is associated with women's education, age of her spouse. Sexual function and sexual motivation were significantly associated with the age of subjects' spouses. Conclusion: In this study, lower score was found in sexual performance while women were scored higher in the sexual capacity and motivation. We argue that these lower score in sexual performance more likely is due to the level of participants' religiosity and formation of their sexuality through an androcentric culture. Women's level of education and the spouse age appear to be predicting factors in the scores the subjects gained. We suggest that gender-specific and culturally sensitive sexuality education should be focus of women's health programs in Iran.

Keywords: sexual behaviors, women, health, Iran

Procedia PDF Downloads 239
1768 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
1767 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 148
1766 Approach to Establish Logistics as a Central Scientific Discipline of Tomorrow's Industry

Authors: Johannes Dregger, Michael Schmidt, Christian Prasse, Michael ten Hompel

Abstract:

Most of the today’s companies face increasing need to operate efficiently. Driven by global trends like shorter product cycles, mass customization and the rising speed of delivery, manufacturing value chains are becoming more and more distributed. Manufacturing processes are becoming highly integrated, e.g. 3D printing. All these changes are affecting companies´ organization. They are leading towards individual, small scale, and ad-hoc logistics processes and structures, and finally, towards a significant increase in the importance of logistics itself since traditional value chains transform into agile value networks. In the past logistics has been following manufacturing but in the future industry, this role allocation might change. With this increase in the logistics practice of companies and businesses, the relevance of logistics research as the methodological foundation of logistics networks and processes is gaining importance. Logistics research is evolving into a central and highly interdisciplinary science for the future industry. Using the example of Germany, this paper discusses ways to establish logistics as a central scientific discipline of the future industry. About three million people work in the logistics sector in Germany. Only automotive and retail industry have more employees. Even though there is a bunch of logistics degree programs at more than 100 institutions of higher education, a common understanding of logistics as a research discipline is missing. In this paper an innovative approach will be presented, including; identified perspectives on logistics, such as process orientation, IT orientation or employees orientation, relevant scientific disciplines for logistics science, a concept for interdisciplinary research approaches to unify the perspectives of the different scientific disciplines on logistics and the methodological base of logistics science.

Keywords: logistics, logistics science, logistics management, future challenges

Procedia PDF Downloads 314
1765 Fear-Mongering and Its Antidotes: The Case of the Hungarian Anti-Migrant Campaign

Authors: Zsofia Nagy

Abstract:

A sharp increase in the number of refugees crossing Hungary during 2015, coupled with the Hungarian government’s agenda-setting strategy led to a powerful anti-migrant campaign in public, framing asylum-seekers as external threats to the country. While this campaign was, by and large, unchallenged by the Hungarian parliamentary opposition, Two-Tailed Dog Party, a Hungarian mock-party launched a counter-billboard campaign attacking the governmental discourse. Taking the latter as a case of digitally supported civic action, the paper first discusses two theoretical problems related to contemporary social movements: the problem of voice and the problem of participation. Afterward the paper presents the case of the Hungarian anti-migrant billboard campaign led by the government and the counter-billboard campaign and examines their action repertoires. It argues that a number of strategic differences are noteworthy: contrasts between traditional and digital methods, the reliance on the ’spirals of silence’ on the one hand and the breaking of this very silence on the other, where people are holding a minority opinion were given a platform and visibility in public. On a deeper level, the counter-campaign challenged the hegemonic views about public discourse. It effectively contrasted the government’s one-to-many, top-bottom approach to political communication with a campaign that relied on many-to-many communication and a bottom-up approach. While it is true that through memetic engineering, the original governmental messages were altered and the outcomes were brought back to the streets of Hungary; the effects of the two campaigns nevertheless reinforced the original anti-migrant focus of the political agenda.

Keywords: counterpublics, migration, refugees, social movements

Procedia PDF Downloads 234
1764 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
1763 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 142
1762 Problem Solving Courts for Domestic Violence Offenders: Duluth Model Application in Spanish-Speaking Offenders

Authors: I. Salas-Menotti

Abstract:

Problem-solving courts were created to assist offenders with specific needs that were not addressed properly in traditional courts. Problem-solving courts' main objective is to pursue solutions that will benefit the offender, the victim, and society as well. These courts were developed as an innovative response to deal with issues such as drug abuse, mental illness, and domestic violence. In Brooklyn, men who are charged with domestic violence related offenses for the first time are offered plea bargains that include the attendance to a domestic abuse intervention program as a condition to dismiss the most serious charges and avoid incarceration. The desired outcome is that the offender will engage in a program that will modify his behavior avoiding new incidents of domestic abuse, it requires accountability towards the victim and finally, it will hopefully bring down statistic related to domestic abuse incidents. This paper will discuss the effectiveness of the Duluth model as applied to Spanish-speaking men mandated to participate in the program by the specialized domestic violence courts in Brooklyn. A longitudinal study was conducted with 243 Spanish- speaking men who were mandated to participated in the men's program offered by EAC in Brooklyn in the years 2016 through 2018 to determine the recidivism rate of domestic violence crimes. Results show that the recidivism rate was less than 5% per year after completing the program which indicates that the intervention is effective in preventing new abuse allegations and subsequent arrests. It's recommended that comparative study with English-speaking participants is conducted to determine cultural and language variables affecting the program's efficacy.

Keywords: domestic violence, domestic abuse intervention programs, Problem solving courts, Spanish-speaking offenders

Procedia PDF Downloads 132
1761 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects

Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke

Abstract:

Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.

Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds

Procedia PDF Downloads 106
1760 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: cloud computing, data centre, infrastructure, it resources, virtualization

Procedia PDF Downloads 351
1759 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
1758 Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, Gumera, HBV model

Procedia PDF Downloads 12
1757 Quantification of the Gumera Catchment's Mountain Hydrological Processes in Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, HBV model, Gumera

Procedia PDF Downloads 11
1756 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
1755 A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation

Authors: Muhammad Idnan, Arshad Javid, Muhammad Nadeem

Abstract:

The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara.

Keywords: Chinkara (Gazella bennettii), domestication, deer farming, ex-situ conservation

Procedia PDF Downloads 164
1754 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
1753 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing

Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale

Abstract:

The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.

Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability

Procedia PDF Downloads 125
1752 Evaluation of the Total Antioxidant Capacity and Total Phenol Content of the Wild and Cultivated Variety of Aegle Marmelos (L) Correa Leaves Used in the Treatment of Diabetes

Authors: V. Nigam, V. Nambiar

Abstract:

Aegle Marmelos leaf has been used as a remedy for various gastrointestinal infections and lowering blood sugar level in traditional system of medicine in India due to the presence of various constituents such as flavonoids, tannins and alkaloids (eg. Aegelin, Marmelosin, Luvangetin).The objective of the present study was to evaluate the total antioxidant activity, total and individual phenol content of the wild and cultivated variety of Aegle marmelos leaves to assess the role of this plant in ethanomedicine in India. The methanolic extracts of the leaves were screened for total antioxidant capacity through Ferric Reducing Antioxidant Potential (FRAP) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay; Total Phenol content (TPC) through spectrophotometric technique based on Folin Ciocalteau assay and for qualitative estimation of phenols, High performance Liquid Chromatography was used. The TPC of wild and cultivated variety was 7.6% and 6.5% respectively whereas HPLC analysis for quantification of individual polyphenol revealed the presence of gallic acid, chlorogenic acid and Ferullic acid in wild variety whereas gallic acid, Ferullic acid and pyrocatechol in cultivated variety. FRAP values and IC 50 value (DPPH) for wild and cultivated variety was 14.65 μmol/l and 11.80μmol/l; 437 μg/ml and 620μg/ml respectively and thus it can be used as potential inhibitor of free radicals. The wild variety was having more antioxidant capacity than the cultivated one it can be exploited further for its therapeutic application. As Aegle marmelos is rich in antioxidant, it can be used as food additives to delay the oxidative deterioration of foods and as nutraceutical in medicinal formulation against degenerative diseases like diabetes.

Keywords: antioxidant activity, aegle marmelos, antidiabetic, nutraceutical

Procedia PDF Downloads 373