Search results for: renewable energy technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11548

Search results for: renewable energy technologies

6238 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 301
6237 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: biomarker discovery, cancer, feature selection, mass spectrometry

Procedia PDF Downloads 343
6236 Measuring Ecological Footprint: Life Cycle Assessment Approach

Authors: Binita Shah, Seema Unnikrishnan

Abstract:

In the recent time, an increasing interest in the analysis and efforts to reduce the environmental impacts generated by man-made activities has been seen widely being discussed and implemented by the society. The industrial processes are expressing their concern and showing keen interest in redesigning and amending the operation process leading to better environmental performance by upgrading technologies and adjusting the financial inputs. There are various tools available for the assessment of process and production of goods on the environment. Most methods look at a particular impact on the ecosystem. Life Cycle Assessment (LCA) is one of the most widely accepted and scientifically founded methodologies to assess the overall environmental impacts of products and processes. This paper looks at the tools used in India for environmental impact assessment.

Keywords: life cycle assessment, ecological footprint, measuring sustainability, India

Procedia PDF Downloads 652
6235 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 129
6234 Green Amphiphilic Nanostructures from CNSL

Authors: Ermelinda Bloise, Giuseppe Mele

Abstract:

In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.

Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations

Procedia PDF Downloads 95
6233 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 46
6232 Pros and Cons of Teaching/Learning Online during COVID-19: English Department at Tahri Muhammed University of Bechar as a Case Study

Authors: Fatiha Guessabi

Abstract:

Students of the Tahri Muhammed University of Bechar shifted to the virtual platform using E-learning platforms when the lockdown started due to the Coronavirus. This paper aims to explore the advantages and inconveniences of online learning and teaching in EFL classes at Tahri Mohammed University. For this investigation, a questionnaire was addressed to EFL students and an interview was arranged with EFL teachers. Data analysis was obtained from 09 teachers and 70 students. After the investigation, the results show that some of the most applied educational technologies and applications are used to turn online EFL classes effectively exciting. Thus, EFL classes became more interactive. Although learners give positive viewpoints about online learning/teaching, they prefer to learn in the classroom.

Keywords: advantages, disadvantages, COVID19, EFL, online learning/teaching, university of Bechar

Procedia PDF Downloads 167
6231 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 379
6230 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum

Authors: Rubab Zafar Kahlon, Ibtisam Butt

Abstract:

Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.

Keywords: forest resource, biodiversity, expliotation, human activities

Procedia PDF Downloads 100
6229 Synthesis of ZnO Nanoparticles with Varying Calcination Temperature for Photocatalytic Degradation of Ethylbenzene

Authors: Darlington Ashiegbu, Herman Johannes Potgieter

Abstract:

The increasing utilization of Zinc Oxide (ZnO) as a better alternative to TiO₂ has been attributed to its wide bandgap (3.37eV), lower production cost, ability to absorb over a larger range of the UV-spectrum and higher efficiency in some cases. ZnO nanoparticles were synthesized via sol-gel process and calcined at 400ᵒC, 500ᵒC, and 650ᵒC. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) surface area measurement. Scanning electron micrograph revealed pseudo-spherical and rod-like morphologies and a high rate of agglomeration for the sample calcined at 650ᵒC, Brunnauer Emmett Teller (BET) surface area measurement was highest in the sample calcined at 500ᵒC, energy dispersive X-ray spectroscopy (EDS) results confirmed the purity of the samples as only Zn and O₂ were detected and X-ray diffraction (XRD) results revealed crystalline hexagonal wurtzite structure of the ZnO nanoparticles. All three samples were utilized in the degradation of ethylbenzene, and a UV-Vis spectrophotometer was utilized in monitoring degradation of ethylbenzene. The sample calcined at 500ᵒC had the highest surface area for reaction, lowest agglomeration and the highest photocatalytic activity in the degradation of ethylbenzene. This revealed temperature as a very important factor in improved and higher photocatalytic activity.

Keywords: ethylbenzene, pseudo-spherical, sol-gel, zinc oxide

Procedia PDF Downloads 169
6228 Learning Model Applied to Cope with Professional Knowledge Gaps in Final Project of Information System Students

Authors: Ilana Lavy, Rami Rashkovits

Abstract:

In this study, we describe Information Systems students' learning model which was applied by students in order to cope with professional knowledge gaps in the context of their final project. The students needed to implement a software system according to specifications and design they have made beforehand. They had to select certain technologies and use them. Most of them decided to use programming environments that were learned during their academic studies. The students had to cope with various levels of knowledge gaps. For that matter they used learning strategies that were organized by us as a learning model which includes two phases each suitable for different learning tasks. We analyze the learning model, describing advantages and shortcomings as perceived by the students, and provide excerpts to support our findings.

Keywords: knowledge gaps, independent learner skills, self-regulated learning, final project

Procedia PDF Downloads 480
6227 The Challenge of the Decarbonization of Shipping and Complex Imo Regulations

Authors: Saiyeed Jakaria Baksh Imran

Abstract:

The earth is being endangered by many of the climate related issues today. The most serious issue for the world today is the global warming. Increase in Greenhouse gas (GHG) emissions post-industrial revolution period is the prime reason for global warming. Shipping is the fifth largest GHG emitting sector worldwide. The key reason for this is because, over 90% of the world trade is conducted through ocean as the ocean alone covers 70% of the earth surface. While the countries continue to develop, trade and commerce continue to increase between them simultaneously. However, there is no sign of reduction in GHG emission from shipping because of many concerned issues. Firstly, there is technological barrier for which ships cannot just become environment friendly immediately. Secondly, there is no alternative fuel available as well. Thirdly, there is no proper mechanism to measure how much ships emit as emission from ships vary according to the size, engine type and loading capacity of ships. The International Maritime Organization (IMO) being the governing body of the international shipping has implemented MARPOL Annex VI. However, the policy alone is not enough unless there is a proper data available regarding ship emissions, which the IMO is yet to figure out. This paper will present a critical analysis of existing IMO policies such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), Data Collection System (SEEMP) and the IMO’s Initial Strategy on Reduction of Greenhouse Gas emissions from shipping. Also, the challenges exist in implementing such policies have been presented in the paper.

Keywords: GHG, IMO, EEDI, SEEMP, DCS, greenhouse gas, decarbonization, shipping

Procedia PDF Downloads 79
6226 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 246
6225 An Operational Model for eMarketing Technology Deployment in Higher Education in the UK

Authors: Amitave Banik

Abstract:

The terms “eMarketing,” “online marketing,” and “Internet marketing” are frequently interchanged and can often be considered synonymous. eMarketing technologies, tactics, tools and strategies can help UK universities to achieve potential competitive benefits. In UK universities, the uptake of eMarketing has been relatively limited, and the complexity of managing eMarketing has become more challenging. Many UK universities are only at an early stage of developing their online marketing capabilities and have not yet to identify their core digital marketing tools and techniques. This research investigates eMarketing adoption and deployment initiatives and provides insights into how to successfully develop and implement these initiatives in UK universities. Moreover, this research puts forward a provisional conceptual framework for eMarketing strategy implementation that relates strategy objectives and operational requirements to technology utilization. The research conducted the epistemological assumptions relate to “how things really are” and “how things really work” in an assumed reality. The methodological assumptions relate to the process of building the conceptual framework and assessing what it can provide about the “real” world. Based on the concept, the framework recognizes the various eMarketing channels, eMarketing techniques and eMarketing strategies that are used to reach the widest student base. A qualitative research method, based on narrative in-depth case studies, includes an empirical investigation at the University of Gloucestershire, University of Wales Trinity St David, University of Westminster, and London Metropolitan Business school. The selection of case/ university provides additional value because there is no previous study studied at this level. Questionnaires and semi-structured interviews have been conducted to gather data from selected universities’ academics and professional services staff. Narrative inquiry has been employed as a tool for analysis of conversations and interviews. Framework analysis used to identify common themes to build/ innovate an operational model from the original provisional conceptual framework. The proposed operational model will provide appropriate eMarketing strategies that create and sustain a competitive business development (business expansion and market growth). Besides, it will offer to one or several segments of customers and its network of partners for creating, marketing and building up relationships to generate profitable and sustainable revenue streams. In this context, the operational model will serve as an instructional-technological interactions roadmap, outlining essential components to guide the eMarketing technological deployment in UK universities.

Keywords: eMarketing, digital technologies, marketing mix, eMarketing plan, strategies, tactics, conceptual framework, operational model, higher education organizations

Procedia PDF Downloads 10
6224 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 138
6223 Commercialization of Film Festivals: An Autobiographical Analysis

Authors: Önder M. Özdem

Abstract:

Producing and circulating films of professional standards have become technically easier with the development and widespread use of digital recording and distribution technologies. Additionally, film festivals on common platforms have rapidly increased in numbers and diversity. On the one hand, no-charge applications result in excessive submissions; thus, it complicates the evaluation and selection process. On the other hand, festival’s high submission fees may make the distribution of films with a limited budget very difficult. Inspired by the author’s engagement with the film industry as both a pre-jury member of an international film festival and an applicant to many festivals, this study discusses the causes and consequences of the increasing commercialization of film festivals. The author’s double identity, both as a jury and an applicant, provides a comparative perspective through which one can unfold the different dimensions and dynamics in the film production and distribution processes.

Keywords: commercialization, film distribution, film festivals, film production

Procedia PDF Downloads 82
6222 Robotic Logging Technology: The Future of Oil Well Logging

Authors: Nitin Lahkar, Rishiraj Goswami

Abstract:

“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).

Keywords: robotic logging technology, innovation, geology, geophysics

Procedia PDF Downloads 317
6221 Practice of Applying MIDI Technology to Train Creative Teaching Skills

Authors: Yang Zhuo

Abstract:

This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice.

Keywords: music education, educational technology, MIDI, teacher training

Procedia PDF Downloads 89
6220 Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery

Authors: Kathleen Frances Haigh, Mieke Nieder-Heitmann, Somayeh Farzad, Mohsen Ali Mandegari, Johann Ferdinand Gorgens

Abstract:

Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid.

Keywords: biorefineries, sugar mill, methanol, ethanol

Procedia PDF Downloads 199
6219 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 476
6218 Great Food, No Atmosphere: A Review of Performance Nutrition for Application to Extravehicular Activities in Spaceflight

Authors: Lauren E. Church

Abstract:

Background: Extravehicular activities (EVAs) are a critical aspect of missions aboard the International Space Station (ISS). It has long been noted that the spaceflight environment and the physical demands of EVA cause physiological and metabolic changes in humans; this review aims to combine these findings with nutritional studies in analogues of the spaceflight and EVA environments to make nutritional recommendations for astronauts scheduled for and immediately returning from EVAs. Results: Energy demands increase during orbital spaceflight and see further increases during EVA. Another critical element of EVA nutrition is adequate hydration. Orbital EVA appears to provide adequate hydration under current protocol, but during lunar surface EVA (LEVA) and in a 10km lunar walk-back test astronauts have stated that up to 20% more water was needed. Previous attempts for in-suit edible sustenance have not been adequately taken up by astronauts to be economically viable. In elite endurance athletes, a mixture of glucose and fructose is used in gels, improving performance. Discussion: A combination of non-caffeinated energy drink and simple water should be available for astronauts during EVA, allowing more autonomy. There should also be provision of gels or a similar product containing appropriate sodium levels to maintain hydration, but not so much as to hyperhydrate through renal water reabsorption. It is also suggested that short breaks be built into the schedule of EVAs for these gels to be consumed, as it is speculated that reason for low uptake of in-suit sustenance is the lack of time available in which to consume it.

Keywords: astronaut, nutrition, space, sport

Procedia PDF Downloads 131
6217 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism

Authors: Maggie Mosher, Adam Carreon, Sean Smith

Abstract:

A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.

Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality

Procedia PDF Downloads 113
6216 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading

Authors: Bineet Kumar

Abstract:

Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.

Keywords: fatigue life, fatigue, fracture, concrete

Procedia PDF Downloads 101
6215 Media Façades in the Wild: Some Lessons

Authors: Hai-Ning Liang, Xiaowei Dai, Nancy Diniz, Charles Fleming, Woon Kian Chong

Abstract:

Media displays in public areas are becoming increasingly pervasive—they are used in many settings, come in different sizes, serve different purposes, and have varied degrees of interactivity. In this paper, we aim to provide a survey of how these displays, often named media façades, are used in the wild in a city in China which is undergoing a rapid growth. This survey is intended to raise greater awareness and discussion about the use and effect of these displays in public areas. Through this survey, we have been able to distill some lessons of what is good, bad, and ugly about some current examples of media displays used in a city that is transitioning into becoming a modern one and one that is located in one of the fastest growing areas in Asia. With this research, we hope that we can provide technology designers and architects with some general principles that can help them integrate these types of technologies into their architectural creations.

Keywords: large displays, media façades, interaction design, architectural displays

Procedia PDF Downloads 410
6214 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 496
6213 Challenges to Change and Innovation in Educational System

Authors: Felicia Kikelomo Oluwalola

Abstract:

The study was designed to identify the challenges to change and innovation in educational system in Nigeria. Educational institutions, like all other organizations, require constant monitoring, to identify areas for potential improvement. However, educational reforms are often not well-implemented. This results in massive wastage of finances, human resources, and lost potential. Educational institutions are organised on many levels, from the individual classroom under the management of a single teacher, to groups of classrooms supervised by a Head Teacher or Executive Teacher, to a whole-school structure, under the guidance of the principal. Therefore, there is need for changes and innovation in our educational system since we are in the era of computer age. In doing so, this paper examined the psychology of change, concept of change and innovation with suggested view points. Educational administrators and individuals should be ready to have the challenge of monitoring changes in technologies. Educational planners/policy makers should be encouraged to involve in change process.

Keywords: challenges, change, education, innovation

Procedia PDF Downloads 619
6212 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 146
6211 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 421
6210 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)

Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo

Abstract:

Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.

Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design

Procedia PDF Downloads 128
6209 Carbohydrate Intake and Physical Activity Levels Modify the Association between FTO Gene Variants and Obesity and Type 2 Diabetes: First Nutrigenetics Study in an Asian Indian Population

Authors: K. S. Vimal, D. Bodhini, K. Ramya, N. Lakshmipriya, R. M. Anjana, V. Sudha, J. A. Lovegrove, V. Mohan, V. Radha

Abstract:

Gene-lifestyle interaction studies have been carried out in various populations. However, to date there are no studies in an Asian Indian population. Hence, we examined whether lifestyle factors such as diet and physical activity modify the association between fat mass and obesity–associated (FTO) gene variants and obesity and type 2 diabetes (T2D) in an Asian Indian population. We studied 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the Chennai Urban Rural Epidemiology Study (CURES) in Southern India. Obesity was defined according to the World Health Organization Asia Pacific Guidelines (non-obese, BMI < 25 kg/m2; obese, BMI ≥ 25 kg/m2). Six single nucleotide polymorphisms (SNPs) in the FTO gene (rs9940128, rs7193144, rs8050136, rs918031, rs1588413 and rs11076023) identified from recent genome-wide association studies for T2D were genotyped by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Dietary assessment was carried out using a validated food frequency questionnaire and physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the model. A joint likelihood ratio test of the main SNP effects and the SNP-diet/physical activity interaction effects was used in the linear regression analyses to maximize statistical power. Statistical analyses were performed using STATA version 13. There was a significant interaction between FTO SNP rs8050136 and carbohydrate energy percentage (Pinteraction=0.04) on obesity, where the ‘A’ allele carriers of the SNP rs8050136 had 2.46 times higher risk of obesity than those with ‘CC’ genotype (P=3.0x10-5) among individuals in the highest tertile of carbohydrate energy percentage. Furthermore, among those who had lower levels of physical activity, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times higher risk of obesity than those with ‘CC’ genotype (P=4.0x10-5). We also found a borderline interaction between SNP rs11076023 and carbohydrate energy percentage (Pinteraction=0.08) on T2D, where the ‘A’ allele carriers in the highest tertile of carbohydrate energy percentage, had 1.57 times higher risk of T2D than those with ‘TT’ genotype (P=0.002). There was also a significant interaction between SNP rs11076023 and physical activity (Pinteraction=0.03) on T2D. No further significant interactions between SNPs and macronutrient intake or physical activity on obesity and T2D were observed. In conclusion, this is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. These findings suggest that the association between FTO gene variants and obesity and T2D is influenced by carbohydrate intake and physical activity levels. Greater understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions will advance the development of behavioral intervention and personalised lifestyle strategies predicted to reduce the development of metabolic diseases in ‘A’ allele carriers of both SNPs in this Asian Indian population.

Keywords: dietary intake, FTO, obesity, physical activity, type 2 diabetes, Asian Indian.

Procedia PDF Downloads 534