Search results for: advanced technology
4361 A Route Guidance System for Car Finding in Indoor Parking Garages
Authors: Pei-Chun Lee, Sheng-Shih Wang
Abstract:
This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.Keywords: guidance, iBeacon, mobile app, navigation
Procedia PDF Downloads 6484360 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry
Authors: F. Yildiz, S. Y. Oturanc
Abstract:
Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera
Procedia PDF Downloads 4154359 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher
Abstract:
Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.Keywords: machining stability, machine learning, sensor, optimization
Procedia PDF Downloads 2114358 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 1514357 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject
Authors: Pimploi Tirastittam, Suppara Charoenpoom
Abstract:
Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.Keywords: blended learning, asynchronous learning, design, process management
Procedia PDF Downloads 4124356 Smart Meter Incorporating UWB Technology
Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran
Abstract:
Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data
Procedia PDF Downloads 5214355 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water
Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.Keywords: Heavy metal recovery, cleaning water, phage display, nickel
Procedia PDF Downloads 1044354 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.Keywords: doubly fed induction generator (DFIG), wind energy, grid fault, electrical engineering
Procedia PDF Downloads 4744353 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 6174352 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids
Authors: Hiroshi Nakayama, Yuji Ito
Abstract:
Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid
Procedia PDF Downloads 3594351 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 4264350 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies
Authors: I. K. Sharma
Abstract:
Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.Keywords: oceanography, water column, autonomous profiler, buoyancy
Procedia PDF Downloads 4034349 Digital Transformation in Production Planning and Control: Evaluation of the Organizational Readiness
Authors: Tobias Wissing, Peter Burggräf, Johannes Wagner
Abstract:
Cost pressure, competitiveness and the increasing turbulence of globalized saturated markets has been the driver for a variety of research activities in the field of production planning and control (PPC) during the past decades. For some time past an increasing awareness for innovative technologies in terms of Industry 4.0 can be noticed. Although there are many promising approaches a solely installation of those smart solutions will not maximize the PPC performance. To accelerate the successful digital transformation the cooperation between employee and technology also has to be adapted. The existing processes and organizational structures might be not sufficient to maximize the utilization of technological innovations. This paper presents the key results of an extensive study which was conducted by the Laboratory for Machine Tools and Production Engineering (WZL) of the RWTH Aachen University to evaluate the current situation and examine the organizational readiness for this digital transformation.Keywords: cyber-physical production system, digital transformation, industry 4.0, production planning and control
Procedia PDF Downloads 3584348 Permeodynamic Particulate Matter Filtration for Improved Air Quality
Authors: Hamad M. Alnagran, Mohammed S. Imbabi
Abstract:
Particulate matter (PM) in the air we breathe is detrimental to health. Overcoming this problem has attracted interest and prompted research on the use of PM filtration in commercial buildings and homes to be carried out. The consensus is that tangible health benefits can result from the use of PM filters in most urban environments, to clean up the building’s fresh air supply and thereby reduce exposure of residents to airborne PM. The authors have investigated and are developing a new large-scale Permeodynamic Filtration Technology (PFT) capable of permanently filtering and removing airborne PMs from outdoor spaces, thus also benefiting internal spaces such as the interiors of buildings. Theoretical models were developed, and laboratory trials carried out to determine, and validate through measurement permeodynamic filtration efficiency and pressure drop as functions of PM particle size distributions. The conclusion is that PFT offers a potentially viable, cost effective end of pipe solution to the problem of airborne PM.Keywords: air filtration, particulate matter, particle size distribution, permeodynamic
Procedia PDF Downloads 2084347 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning
Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.Keywords: augmented reality, distance learning, STEM didactics, technology in education
Procedia PDF Downloads 1324346 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 424345 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1344344 Performance of the Hybrid Loop Heat Pipe
Authors: Nandy Putra, Imansyah Ibnu Hakim, Iwan Setyawan, Muhammad Zayd A.I
Abstract:
A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C.Keywords: hybrid, heat pipe, dry out, assisted, pump
Procedia PDF Downloads 3544343 Android Application on Checking Halal Product Based on Augmented Reality
Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad
Abstract:
This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.Keywords: android, augmented reality, food, halal, Malaysia, products, XML
Procedia PDF Downloads 4614342 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia
Authors: Ali A. Aldosari
Abstract:
Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.Keywords: spatial analysis, geographical information system, change detection
Procedia PDF Downloads 4074341 Employee Inventor Compensation: A New Quest for Comparative Law
Authors: Andrea Borroni
Abstract:
The evolution of technology, the global scale of economy, and the new short-term employment contracts make a very peculiar set of disposition of raising interest for the legal interpreter: the employee inventor compensation. Around the globe, this issue is differently regulated according to the legal systems; therefore, it is extremely fragmented. Of course, employers with transnational businesses should face this issue from a comparative perspective. Different legal regimes are available worldwide awarding, as a consequence, diverse compensation to the inventor and according to their own methodology. Given these premises, the recourse to comparative law methodology (legal formants, diachronic and synchronic methodology, common core approach) is the best equipped to face all these different national approaches in order to achieve a tidy systematic. This research, so, elaborates a map of the specific criteria to grant the compensation for the inventor and to show the criteria to calculate them. This finding has been the first step to find out a common core of the discipline given by the common features present in the different legal systems.Keywords: comparative law, employee invention, intellectual property, legal transplant
Procedia PDF Downloads 3374340 Transforming Healthcare Data Privacy: Integrating Blockchain with Zero-Knowledge Proofs and Cryptographic Security
Authors: Kenneth Harper
Abstract:
Blockchain technology presents solutions for managing healthcare data, addressing critical challenges in privacy, integrity, and access. This paper explores how privacy-preserving technologies, such as zero-knowledge proofs (ZKPs) and homomorphic encryption (HE), enhance decentralized healthcare platforms by enabling secure computations and patient data protection. An examination of the mathematical foundations of these methods, their practical applications, and how they meet the evolving demands of healthcare data security is unveiled. Using real-world examples, this research highlights industry-leading implementations and offers a roadmap for future applications in secure, decentralized healthcare ecosystems.Keywords: blockchain, cryptography, data privacy, decentralized data management, differential privacy, healthcare, healthcare data security, homomorphic encryption, privacy-preserving technologies, secure computations, zero-knowledge proofs
Procedia PDF Downloads 254339 Modeling the Human Harbor: An Equity Project in New York City, New York USA
Authors: Lauren B. Birney
Abstract:
The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.Keywords: computer science, data science, equity, diversity and inclusion, STEM education
Procedia PDF Downloads 614338 Electrochemical Study of Ni and/or Fe Based Mono- And Bi- Hydroxides
Authors: H. Benaldjia, N. Habib, F. Djefaflia, A. Nait-Merzoug, A. Harat, J. El-Haskouri, O. Guellati
Abstract:
Currently, the technology has attracted knowledge of energy storage sources similar to batteries, capacitors and super-capacitors because of its very different applications in many fields with major social and economic challenges. Moreover, hydroxides have attracted much attention as a promising and active material choice in large-scale applications such as molecular adsorption/storage and separation for the environment, ion exchange, nanotechnology, supercapacitor for energy storage and conversion, electro-biosensing, and catalysts, due to their unique properties which are strongly influenced by their composition, microstructure, and synthesis method. In this context, we report in this study the synthesis of hydroxide-based nanomaterials precisely based on Ni and Fe using a simple hydrothermal method with mono and bi precursors at optimized growth conditions (6h-120°C). The obtained products were characterized using different techniques, such as XRD, FTIR, FESEM and BET, as well as electrochemical measurements.Keywords: energy storage, Supercapacitors, nanocomposites, nanohybride, electro-active materials.
Procedia PDF Downloads 884337 The Evaluation of a Novel Cardiac Index derived from Anthropometric and Biochemical Parameters in Pediatric Morbid Obesity and Metabolic Syndrome
Authors: Mustafa Metin Donma
Abstract:
Metabolic syndrome (MetS) components are noteworthy among children with obesity and morbid obesity because they point out the cases with MetS, which have the great tendency to severe health problems such as cardiovascular diseases both in childhood and adulthood. In clinical practice, considerable efforts are being observed to bring into the open the striking differences between morbid obese cases and those with MetS findings. The most privileged aspect is concerning cardiometabolic features. The aim of this study was to derive an index which behaves different in children with and without MetS from the cardiac point of view. For the purpose, aspartate transaminase (AST), a cardiac enzyme still being used independently to predict cardiac-related problems, was used. One hundred and twenty four children were recruited from the outpatient clinic of Department of Pediatrics in Tekirdag Namik Kemal University, Faculty of Medicine. Forty-three children with normal body mass index, forty-one and forty morbid obese (MO) children with MetS and without the characteristic features of MetS, respectively, were included in the study. Weight, height, waist circumference (WC), hip C (HC), head C (HdC), neck C (NC), systolic and diastolic blood pressure values were measured and recorded. Body mass index and anthropometric ratios were calculated. Fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) analyses were performed. The values for AST, alanin transaminase (ALT) and AST/ALT were obtained. Advanced Donma cardiac index (ADCI) values were calculated. The formula for the index was [(TRG/HDL-C) * (INS/FBG)] * [(WC+HC)/Height] * [(HdC+NC)/Height]. Statistical evaluations including correlation analysis were done by a statistical package program. The statistical significance degree was accepted as p<0.05. The index, ADCI, was developed from both anthropometric and biochemical parameters. All anthropometric measurements except weight were included in the equation. Besides all biochemical parameters concerning MetS components were also added. This index was tested in each of three groups. Its performance was compared with the performance of cardiometabolic index (CMI). It was also checked whether it was compatible with AST activity. The performance of ADCI was better than that of CMI. Instead of double increase, the increase of three times was observed in children with MetS compared to MO children. The index was correlated with AST in MO group and with AST/ALT in MetS group. In conclusion, this index was superior in discovering cardiac problems in MO and in diagnosing MetS in MetS groups. It was also arbiter to point out cardiovascular and MetS aspects among the groups.Keywords: aspartate transaminase, cardiac, children, index, obesity
Procedia PDF Downloads 694336 Conflicts Identification Approach among Stakeholders in Goal-Oriented Requirements Analysis
Authors: Muhammad Suhaib
Abstract:
Requirements Analysis are the most important part of software Engineering for both system application development, and project requirements. Conflicts often arise during the requirements gathering and analysis phase. This research aims to identify conflicts during the requirements gathering phase in software development life cycle, Research, Development, and Technology converted the world into a global village. During requirements elicitation/gathering phase it’s very difficult to understand the main objective of stakeholders, after completion of requirements elicitation task final results are used for Software Requirements Specification (SRS), SRS is the highly important outcome of the requirements analysis phase. this is the foundation between the developers and stakeholders or customers, proposed methodology will be helpful to identify those conflicts in a very easy manner during the initial phase of the project.Keywords: goal oriented requirements analysis, conflicts identification model, requirements analysis, requirements engineering
Procedia PDF Downloads 1394335 Mobile Phone Banking Applies and Customer Intention: A Case Study in Libya
Authors: Iman E. Bouthahab, Badea B. Geador
Abstract:
Aim of this paper is to explore the prospect of a new approach of mobile phone banking in Libya. This study evaluates customer knowledge on commercial mobile banking in Libya. To examine the relationship between age, occupation and intention for using mobile banking for commercial purpose, a survey was conducted to gather information from one hundred Libyan bank clients. The results indicate that Libyan customers have accepted the new technology and they are ready to use it. There is no significant joint relationship between age and occupation found in intention to use mobile banking in Libya. On the other hand, the customers’ knowledge about mobile banking has a greater relationship with the intention. This study has implications for demographic researches and consumer behaviour disciplines. It also has profitable implications for banks and managers in Libya, as it will assist in better understanding of the Libyan consumers and their activities, when they develop their market strategies and new service.Keywords: mobile banking, intention, customer knowledge, banks in Libya
Procedia PDF Downloads 4384334 Analyzing the Efficiency of Several Gum Extraction Tapping Systems for Wood Apple Trees
Authors: K. M. K. D Weerasekara, R. M. K. M Rathnayake, R. U. Halwatura, G. Y. Jayasinghe
Abstract:
Wood apple (Limonia acidissima L.) trees are native to Sri Lanka and India. Wood apple gum is widely used in the food, coating, and pharmaceutical industries. Wood apple gum was a major component in ancient Sri Lankan coating technology as well. It is also used as a suspending agent in liquid syrups and food ingredients such as sauces, emulsifiers, and stabilizers. Industrial applications include adhesives for labeling and packaging, as well as paint binder. It is also used in the production of paper and cosmetics. Extraction of wood apple gum is an important step in ensuring maximum benefits for various uses. It is apparent that an abundance of untapped potential lies in wood apple gum if people are able to mass produce them. Hence, the current study uses a two-factor factorial design with two major variables and four replications to investigate the best gum-extracting tapping system for Wood apple gum. This study's findings will be useful to Wood apple cultivators, researchers, and gum-based industries alike.Keywords: wood apple gum, limonia acidissima l., tapping, tapping cuts
Procedia PDF Downloads 794333 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients
Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini
Abstract:
Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker
Procedia PDF Downloads 1084332 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration
Authors: Damtew Samson Zerihun
Abstract:
This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller
Procedia PDF Downloads 371