Search results for: dynamic function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8504

Search results for: dynamic function

3374 Gender Effects in EEG-Based Functional Brain Networks

Authors: Mahdi Jalili

Abstract:

Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.

Keywords: EEG, brain, functional networks, network science, graph theory

Procedia PDF Downloads 440
3373 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: thermal energy storage, phase change material, melting, solidification

Procedia PDF Downloads 342
3372 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO

Authors: Mahmoud Nadir, Adel Ghenaiet

Abstract:

The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.

Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work

Procedia PDF Downloads 377
3371 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops

Authors: K. Rusnakova, D. Gerych, M. Stehlik

Abstract:

Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.

Keywords: neuroticism, conscientiousness, postural stability, combat troops

Procedia PDF Downloads 135
3370 The Contribution of Diet and Lifestyle Factors in the Prevalence of Irritable Bowel Syndrome

Authors: Alexander Dao, Oscar Wambuguh

Abstract:

Irritable Bowel Syndrome (IBS) is a heterogeneous functional bowel disease that is characterized by chronic visceral abdominal pain and abnormal bowel function and habits. Its multifactorial pathophysiology and mechanisms are still largely a mystery to the contemporary biomedical community, although there are many hypotheses to try to explain IBS’s presumed physiological, psychosocial, genetic, and environmental etiologies. IBS’s symptomatic presentation is varied and divided into four major subtypes: IBS-C, IBS-D, IBS-M, and IBS-U. Given its diverse presentation and unclear mechanisms, diagnosis is done through a combination of positive identification utilizing the “Rome IV Irritable Bowel Syndrome Criteria'' (Rome IV) diagnostic criteria while also excluding other potential conditions with similar symptoms. Treatment of IBS is focused on the management of symptoms using an assortment of pharmaceuticals, lifestyle changes, and dietary changes, with future potential in microbial treatment and psychotherapy as other therapy methods. Its chronic, heterogeneous nature and disruptive gastrointestinal (GI) symptoms are negatively impactful on patients’ daily lives, health systems, and society. However, with a better understanding of the gaps in knowledge and technological advances in IBS’s pathophysiology, management, and treatment options, there is optimism for the millions of people worldwide who are suffering from the debilitating effects of IBS.

Keywords: irritable bowel syndrome, lifestyle, diet, functional gastrointestinal disorder

Procedia PDF Downloads 83
3369 Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7−δ Bulk Superconductor on the Sm Doping

Authors: Raheleh Hajilou

Abstract:

In this study, we report the synthesis and characterization of YBa2Cu3O7-δ (YBCO) high-temperature superconductor prepared by solid-state method and doped with Sm in different weight percentages, 0, 0.01, 0.02 and 0.05 wt. The result of X-ray diffraction (XRD) analysis conforms to the formation of an orthorhombic phase of superconductivity in our samples. This is an important finding and indicates that the samples may exhibit superconductivity properties at certain conditions. Our results unequivocally point to a different structural order or disorder in SM/Y samples as compared to Sm based samples. We suggest that different site preferences of oxygen vacancies, predominantly created in CuO2 planes (CuO chains) of Y and Sm-based samples, might be responsible for the observed difference in the behavior. This contention is supported by a host of other considerations and experimental observations. The study investigated the effects of Sm doping on the YBCO system on various properties such as structural, critical temperature (Tc), scanning electron microscope (SEM), irresistibility line(IL), critical current density, jc, and flux line pinning force. It Seems the sample x=0.05 undergoes an insulator transition, which suppresses its superconducting transition temperature (Tc). Additionally, magnetization was measured as a function of temperature (M-T) and magnetic loops (M-H) at constant temperatures of 10. 20, 30, 40, 50 and 60K up to 10KG.

Keywords: high-Tc superconductors, Scanning electron microscopy, X-ray scattering, Irreversibility line

Procedia PDF Downloads 9
3368 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 84
3367 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth

Authors: Moon Moon Devi, Ran Budnik

Abstract:

The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.

Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions

Procedia PDF Downloads 220
3366 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 86
3365 Relation between Copper, Lipid Profile, and Cognition in Elderly Jordanians

Authors: Eman Al-khateeba, Ebaa Al-Zayadneha, Osama Al-Dalahmahb, Zeinab Alawadib, Faisal Khatiba, Randa Naffaa, Yanal Shafagoj

Abstract:

The purpose of the current study was to examine the association of plasma copper and lipid concentrations with changes in cognitive function in elderly Jordanian individuals. The study population consisted of two groups; 52 subjects with dementia, and 50 controls. All individuals were screened with Mini-Mental State Examination (MMSE) and Clock drawing test (CDT).Serum copper and lipid profile were assessed in all subjects, and the results were statistically evaluated at P < 0.05 level of significance. Dementia group had 10.1 % higher copper levels than controls however the difference was not statistically significant. No significant differences could be found between the two groups in lipid profile levels. There was no significant correlation between serum copper, lipid profile and cognitive decline in elderly Jordanians. Demographic variables indicate that educational level less than 12 years and illiterate demonstrated a 3.29 fold (p=0.026) and 6.29 fold (p=0.002) increase in risk of developing dementia, respectively. While coffee intake showed a protective effect against cognitive decline with 6.25 fold lower risk with increased coffee intake.

Keywords: copper, cholesterol, dementia, Alzheimer's disease, lipid profile, coffee

Procedia PDF Downloads 477
3364 Aqueous Hydrogen Sulphide in Slit-Shaped Silica Nano-Pores: Confinement Effects on Solubility, Structural and Dynamical Properties

Authors: Sakiru Badmos, David R. Cole, Alberto Striolo

Abstract:

It is known that confinement in nm-size pores affects many structural and transport properties of water and co-existing volatile species. Of particular interest for fluids in sub-surface systems, in catalysis, and in separations are reports that confinement can enhance the solubility of gases in water. Equilibrium molecular dynamics simulations were performed for aqueous H₂S confined in slit-shaped silica pores at 313K. The effect of pore width on the H₂S solubility in water was investigated. Other properties of interest include the molecular distribution of the various fluid molecules within the pores, the hydration structure for solvated H₂S molecules, and the dynamical properties of the confined fluids. The simulation results demonstrate that confinement reduces the H₂S solubility in water and that the solubility increases with pore size. Analysis of spatial distribution functions suggests that these results are due to perturbations on the coordination of water molecules around H₂S due to confinement. Confinement is found to dampen the dynamical properties of aqueous H₂S as well. Comparing the results obtained for aqueous H₂S to those reported elsewhere for aqueous CH₄, it can be concluded that H₂S permeates hydrated slit-shaped silica nano-pores faster than CH₄. In addition to contributing to better understanding the behavior of fluids in subsurface formations, these observations could also have important implications for developing new natural gas sweetening technologies.

Keywords: confinement, interfacial properties, molecular dynamic simulation, sub-surface formations

Procedia PDF Downloads 159
3363 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 15
3362 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles

Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto

Abstract:

Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.

Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design

Procedia PDF Downloads 254
3361 Mediation Effect of Mindful Parenting on Parental Self Efficacy and Parent-Child Attachment in Hong Kong

Authors: Man Chung Chu

Abstract:

In the dynamic family interaction, parental self-efficacy is connected with parent-child attachment. Parental self-efficacy and its corresponding behavior played an influential role in the lifespan development of the child. Recently, Mindful parenting is popularly addressed as it lightens parents’ awareness to their own thoughts feelings and behaviors by adapting a nonjudgmental attitude in the present moment being with the child. The effectiveness of mindful parent is considerably significant in enhancing parent-child relationship as well as family functioning. Parenting in early developmental stage is always challenging and essential for later growth, however, literature is rarely exploring the mediation of mindful parenting on the effect of parent self-efficacy on parent-child attachment in preschoolers’ families. The mediation effect of the research shed light on how mindful parenting should head, where parental self-efficacy training should be incorporated together with mindful family program in attempt to yield the best outcome in the family of young-aged children. Two hundred and eight (208) parents, of two to six years old children, were participated in the study and results supported the significance in the mediator effect of mindful parenting in both facets, i.e. Parent-focused - ‘Mindful Discipline’ and Child-focused – ‘Being in the moment with the child’ where parental self-efficacy is a significant predictor of mindful parenting. The implication of the result suggests that mindful parenting would be a therapeutic framework in promoting family functioning and child’s well-being, it would also be a ‘significant helping hand’ in maintaining continuous secure attachment relationship and growing their mindful children in a family.

Keywords: mediation effect, mindful parenting, parental self efficacy, parent-child attachment, preschoolers

Procedia PDF Downloads 194
3360 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 335
3359 Torque Loss Prediction Test Method of Bolted Joints in Heavy Commercial Vehicles

Authors: Volkan Ayik

Abstract:

Loosening as a result of torque loss in bolted joints is one of the most encountered problems resulting in loss of connection between parts. The main reason for this is the dynamic loads to which the joints are subjected while the vehicle is moving. In particular, vibration-induced loads can loosen the joints in any size and geometry. The aim of this study is to study an improved method due to road-induced vibration in heavy commercial vehicles for estimating the vibration performance of bolted joints of the components connected to the chassis, before conducting prototype level vehicle structural strength tests on a proving ground. The frequency and displacements caused by the road conditions-induced vibration loads have been determined for the parts connected to the chassis, and various experimental design scenarios have been formed by matching specific components and vibration behaviors. In the studies, the performance of the torque, washer, test displacement, and test frequency parameters were observed by maintaining the connection characteristics on the vehicle, and the sensitivity ratios for these variables were calculated. As a result of these experimental design findings, tests performed on a developed device based on Junker’s vibration device and proving ground conditions versus test correlation levels were found.

Keywords: bolted joints, junker’s test, loosening failure, torque loss

Procedia PDF Downloads 122
3358 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 637
3357 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya

Authors: Abdelbasit Gadour

Abstract:

This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with special educational needs. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom thirteen were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioral difficulties is also evident from this study. Children with behavior difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behavior problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behavior problems to teachers’ deficiencies, followed by school lack of resources.

Keywords: psychologist, school, social workers, special education

Procedia PDF Downloads 104
3356 Technology in the Calculation of People Health Level: Design of a Computational Tool

Authors: Sara Herrero Jaén, José María Santamaría García, María Lourdes Jiménez Rodríguez, Jorge Luis Gómez González, Adriana Cercas Duque, Alexandra González Aguna

Abstract:

Background: Health concept has evolved throughout history. The health level is determined by the own individual perception. It is a dynamic process over time so that you can see variations from one moment to the next. In this way, knowing the health of the patients you care for, will facilitate decision making in the treatment of care. Objective: To design a technological tool that calculates the people health level in a sequential way over time. Material and Methods: Deductive methodology through text analysis, extraction and logical knowledge formalization and education with expert group. Studying time: September 2015- actually. Results: A computational tool for the use of health personnel has been designed. It has 11 variables. Each variable can be given a value from 1 to 5, with 1 being the minimum value and 5 being the maximum value. By adding the result of the 11 variables we obtain a magnitude in a certain time, the health level of the person. The health calculator allows to represent people health level at a time, establishing temporal cuts being useful to determine the evolution of the individual over time. Conclusion: The Information and Communication Technologies (ICT) allow training and help in various disciplinary areas. It is important to highlight their relevance in the field of health. Based on the health formalization, care acts can be directed towards some of the propositional elements of the concept above. The care acts will modify the people health level. The health calculator allows the prioritization and prediction of different strategies of health care in hospital units.

Keywords: calculator, care, eHealth, health

Procedia PDF Downloads 259
3355 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass

Authors: Demet Tatar, Bahattin Düzgün

Abstract:

In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.

Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis

Procedia PDF Downloads 382
3354 Evaluation of Spatial Correlation Length and Karhunen-Loeve Expansion Terms for Predicting Reliability Level of Long-Term Settlement in Soft Soils

Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi

Abstract:

The spectral random field method is one of the widely used methods to obtain more reliable and accurate results in geotechnical problems involving material variability. Karhunen-Loeve (K-L) expansion method was applied to perform random field discretization of cross-correlated creep parameters. Karhunen-Loeve expansion method is based on eigenfunctions and eigenvalues of covariance function adopting Kernel integral solution. In this paper, the accuracy of Karhunen-Loeve expansion was investigated to predict long-term settlement of soft soils adopting elastic visco-plastic creep model. For this purpose, a parametric study was carried to evaluate the effect of K-L expansion terms and spatial correlation length on the reliability of results. The results indicate that small values of spatial correlation length require more K-L expansion terms. Moreover, by increasing spatial correlation length, the coefficient of variation (COV) of creep settlement increases, confirming more conservative and safer prediction.

Keywords: Karhunen-Loeve expansion, long-term settlement, reliability analysis, spatial correlation length

Procedia PDF Downloads 155
3353 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: break even point, fuzzy crisp data, fuzzy sets, productivity, productivity cycle, total productive maintenance

Procedia PDF Downloads 331
3352 Accessible Sustainability Assessment Tools and Approach of the University level Academic Programs

Authors: S. K. Ashiquer Rahman

Abstract:

The innovative knowledge threshold significantly shifted education from traditional to an online version which was an emergent state of arts for academic programs of any higher education institutions; the substantive situation thus raises the importance of deliberative integration of education, Knowledge, technology and sustainability as well as knowledge platforms, e.g., ePLANETe. In fact, the concept of 'ePLANETe' an innovative knowledge platform and its functionalities as an experimental digitized platform for contributing sustainable assessment of academic programs of higher education institution(HEI). Besides, this paper assessed and define the common sustainable development challenges of higher education(HE) and identified effective approach and tools of 'ePLANETe’ that is enable to practices sustainability assessment of academic programs through the deliberation methodologies. To investigate the effectiveness of knowledge tools and approach of 'ePLANETe’, I have studied sustainable challenges digitized pedagogical content as well as evaluation of academic programs of two public universities in France through the 'ePLANETe’ evaluation space. The investigation indicated that the effectiveness of 'ePLANETe’s tools and approach perfectly fit for the quality assessment of academic programs, implementation of sustainable challenges, and dynamic balance of ecosystem within the university communities and academic programs through 'ePLANETe’ evaluation process and space. The study suggests to the relevant higher educational institution’s authorities and policymakers could use this approach and tools for assessing sustainability and enhancing the sustainability competencies of academic programs for quality education

Keywords: ePLANETe, deliberation, evaluation, competencies

Procedia PDF Downloads 106
3351 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 291
3350 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search

Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek

Abstract:

Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.

Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling

Procedia PDF Downloads 360
3349 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 487
3348 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 21
3347 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation

Authors: Swanand Patil, Pankaj Agarwal

Abstract:

In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.

Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation

Procedia PDF Downloads 344
3346 Evaluation of Energy Efficiency Development Perspectives in Lithuanian Furniture Industry

Authors: J. Vasauskaite

Abstract:

From the perspective of Lithuanian furniture enterprises, the role of energy efficiency is significant as it leads to direct economic benefits, increased competitiveness and higher productivity. There are various possible improvements in energy efficiency in industry: changes in the production process, investment in R&D, implementation of energy-saving technologies or energy management systems. The research aims to contribute the understanding of energy efficiency importance in industry by presenting possible improvements of energy use in different manufacturing process of enterprises. The evaluation methodology included quantitative and qualitative research methods: the comparative and statistical analysis of primary and secondary sources of information. This paper provides the detailed analysis of the energy efficiency development opportunities and challenges in Lithuanian furniture industry. The results of the study show the importance of technological innovations, energy efficiency policies and environmental management strategies in developing energy efficiency within the wood and furniture industry. The analysis of energy efficiency development in Lithuanian furniture industry showed that the industrial activities are influenced by various internal and external factors such as increasing flows of products, human resources and overall management decisions; dynamic growth and increasing competition; emerging need for environmental information. In the light of these factors, Lithuanian furniture industry has undergone significant changes – restructuring, technological advances and business model innovations, allowing it to be more export-oriented and focus on upgrading quality, design and innovation.

Keywords: energy efficiency, energy policy, furniture industry, technological innovation

Procedia PDF Downloads 508
3345 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 312