Search results for: conditional proportional reversed hazard rate model
19011 Uncertainty and Optimization Analysis Using PETREL RE
Authors: Ankur Sachan
Abstract:
The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.Keywords: uncertainty, reservoir model, parameters, optimization analysis
Procedia PDF Downloads 67519010 Logistics Hub Location and Scheduling Model for Urban Last-Mile Deliveries
Authors: Anastasios Charisis, Evangelos Kaisar, Steven Spana, Lili Du
Abstract:
Logistics play a vital role in the prosperity of today’s cities, but current urban logistics practices are proving problematic, causing negative effects such as traffic congestion and environmental impacts. This paper proposes an alternative urban logistics system, leasing hubs inside cities for designated time intervals, and using handcarts for last-mile deliveries. A mathematical model for selecting the locations of hubs and allocating customers, while also scheduling the optimal times during the day for leasing hubs is developed. The proposed model is compared to current delivery methods requiring door-to-door truck deliveries. It is shown that truck traveled distances decrease by more than 60%. In addition, analysis shows that in certain conditions the approach can be economically competitive and successfully applied to address real problems.Keywords: hub location, last-mile, logistics, optimization
Procedia PDF Downloads 20119009 A Conceptual E-Business Model and the Effect of Strategic Planning Parameters on E-Business Strategy Management and Performance
Authors: Alexandra Lipitakis, Evangelia A. E. C. Lipitakis
Abstract:
In this article, a class of e-business strategy planning parameters are introduced and their effect on financial and non-financial performance of e-businesses and organizations is investigated. The relationships between these strategic planning parameters, i.e. Formality, Participation, Sophistication, Thoroughness, Synergy and Cooperation, Entropic Factor, Adaptivity, Uncertainty and Financial and Non-Financial Performance are examined and the directions of these relationships are given. A conceptual model has been constructed and quantitative research methods can be used to test the considered eight hypotheses. In the framework of e-business strategy planning this research study clearly demonstrates how strategic planning components have positive relationships with e-business strategy management and performance.Keywords: e-business management, e-business model, e-business performance assessments, strategy management methodologies, strategy planning, quantitative methods
Procedia PDF Downloads 39419008 Dual Carriage of Hepatitis B Surface and Envelope Antigen in Adults in the Poorest Region of Nigeria: 2000-2015
Authors: E. Isaac, I. Jalo, Y. Alkali, A. Ajani, A. Rasaki, Y. Jibrin, K. Mustapha, A. Ayuba, S. Charanchi, H. Danlami
Abstract:
Introduction: Hepatitis B infection continues to be a serious global health problem with about 2 billion people infected worldwide, many of these in sub-Saharan Africa. Nigeria is one of the countries with the highest incidence, with a prevalence of 10-15%. Methods: Records of Hepatitis B surface and envelope antigen test results in adults in Federal Teaching Hospital, Gombe between May 2000 and May 2015 were retrieved and analyzed. Findings: Adult out-patient consultations and in-patient admissions were 343,083 and 67,761 respectively, accounting for 87% of total. Hepatitis B surface antigenaemia was tested for in 23,888 adults and children. 88.9% (21240) were adults. Males constituted 56% (11902/21240) and females 44% (9211/21240). 5104 (24.0%) of tested individuals were 19-25years; 12,039 (56.7%) 26-45years; 21119 (9.0%) 46-55years; 2.8% (590/21240) and 766 (3.6%) >65years. Among adult males, 17% (2133/11902) was contributed by ages 19-25. 58% (7017/11902), 11.9% (1421/11902), 6.4% (765/11902) and 4.7% (563/11902) of males were 26-45 years old, 46-55 years old and 56-65 years and >65year old respectively. Adults aged 19-25years, 26-45 years, 46-55years, 56-65 and > 65years each constituted 32% (2966/9211); 54.4% (5009/9211); 7.4% (684/9211), 3.8% (350/9211) and 2.2% (201/9211) of females respectively. 16.2% (3431/21,240) demonstrated Hepatitis B surface antigenaemia. The sero-positivity rate was 16.9% (865//5104) between 19-25years, 21.2% (2559/12,039) among 26-45year old individuals. 17.9% (377/2111); 14.1% (83/590) and 7.3% (56/766) of 46-55year old, 56-65year old and >65year old individuals screened were seropositive. The highest sero-positivity rate was found in male young adults aged 19-25years 27.9% (398/1426) and lowest in elderly males 7.4% (28/377). HBe antigen testing rate among HbSAg seropositive individuals was 97.3% (3338/3431). Males constituted 59.7% (1992/3338) and females 40.3% (1345/3338). 25.3% (844/3338) were aged 19-25years; 61.1% (2039/3338) 26-45years; 10.2% (340/3338) 46-55years; 2.7% (90/3338) 56-65years and 0.7% >65years old. HB e antigenaemia was positive in 8.2% (275/3338) of those tested. 41% (113/275); 50.2% (138/275); 5.4% (15/275); 1.8% (5/275) and 1.1 (3/275) of HB e sero-positivity was among age groups 19-25, 26-45, 46-55, 56-65 and > 65year old individuals. Dual sero-positivity rate was highest 13% (113/844) in young adults 19-25years and lowest between 46-55years; 15/340 (4.4%). 4.2% (15/360); 13.5% (69/512); 6.7% (90/1348); 4.6% (10/214); 5% (2/40) and 6.7% (1/15) of males aged 19-25; 26-45; 46-55; 56-65; and >65years had HB e antigenaemia respectively. Among females - 27/293 (9.2%) aged 19-25; 26/500 (5.2%) 26-45; 2/84 (2.4%) 46-55; 1/12 (8.3%) 56-65 and 1/9(11.1%) >65years had dual antigenaemia. In women of childbearing age, 6.9% (53/793) had a dual carriage. Conclusion: Dual hepatitis B surface and envelope antigenaemia are highest in young adult males. This will have significant implications for the development of chronic liver disease and hepatocellular carcinoma.Keywords: adult, Hepatitis B, Nigeria, dual carriage
Procedia PDF Downloads 26319007 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 39519006 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 33819005 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 26719004 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe
Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante
Abstract:
High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation
Procedia PDF Downloads 35419003 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 34519002 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies
Authors: M. Deyab, A. Al-Sabagh, S. Keera
Abstract:
The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.Keywords: erosion-corrosion, steel, oil sands slurry, polarization
Procedia PDF Downloads 29819001 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 48719000 Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field
Authors: P. W. Chen, C. T. Chang, Y. Peng, J. Y. Wu, D. J. Jan, Md. Manirul Ali
Abstract:
In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength.Keywords: cathode spot, vacuum arc discharge, oblique magnetic field, tangential magnetic field
Procedia PDF Downloads 32818999 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 8418998 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 4818997 Comparison of Conjunctival Autograft versus Amniotic Membrane Transplantation for Pterygium Surgery
Authors: Luksanaporn Krungkraipetch
Abstract:
Currently, surgery is the only known effective treatment for pterygium. In certain groups, the probability of recurrence after basic sclera excision is very significant. Tissue grafting is substantially more time-consuming and challenging than keeping the sclera uncovered, but it reduces the chance of recurrence. Conjunctival autograft surgery is older than amniotic membrane graft surgery. The purpose of this study was to compare pterygium surgery with conjunctival autograft against an amniotic membrane transplant. In the study, a randomized controlled trial was used. Four cases were ruled out (two for failing to meet inclusion criteria and the other for refusing to participate). Group I (n = 40) received the intervention, whereas Group II (n = 40) served as the control. Both descriptive and inferential statistical approaches were used, including data analysis and data analysis statistics. The descriptive statistics analysis covered basic pterygium surgery information as well as the risk of recurrent pterygium. As an inferential statistic, the chi-square was used. A p-value of 0.05 is statistically significant. The findings of this investigation were the majority of patients in Group I were female (70.0%), aged 41–60 years, had no underlying disease (95.0%), and had nasal pterygium (97.5%). The majority of Group II patients were female (60.0%), aged 41–60 years, had no underlying disease (97.5%) and had nasal pterygium (97.5%). Group I had no recurrence of pterygium after surgery, but Group II had a 7.5% recurrence rate. Typically, the recurrence time is twelve months. The majority of pterygium recurrences occur in females (83.3%), between the ages of 41 and 60 (66.7%), with no underlying disease. The recurrence period is typically six months (60%) and a nasal pterygium site (83.3%). Pterygium recurrence after surgery is associated with nasal location (p =.002). 16.7% of pterygium surgeries result in complications; one woman with nasal pterygium underwent autograft surgery six months later. The presence of granulation tissue at the surgical site is a mild complication. A pterygium surgery recurrence rate comparison of conjunctival autograft and amniotic membrane transplantation revealed that conjunctival autograft had a higher recurrence rate than amniotic membrane transplantation (p =.013).Keywords: pterygium, pterygium surgery, conjunctival autograft, amniotic membrane transplantation
Procedia PDF Downloads 7318996 Impact of Coccidia on Mortality and Weight Growth in Japanese Quail Coturnix japonica (Aves, Phasianidae) in Algeria
Authors: Amina Smai, Fairouz Haddadj, Habiba Saadi-Idouhar, Meriem Aissi, Safia Zenia, Salaheddine Doumandji
Abstract:
Coccidiosis is a very common intestinal parasitic disease caused by a worldwide distributed protozoan of the genus Eimeria. This disease is very common in young birds beyond the second week of life, especially in land-based breeding. The study was carried out in a hunting center of Zeralda located in the north-east of Algiers. The objective of our work is to study the evolution of coccidiosis in quails from 1 to 35 days old by collecting their droppings daily. These are analyzed in the laboratory using the flotation method and the Mac Master one to count coccidia. Weight changes are taken into account as well as mortality in parallel with certain zootechnical parameters such as density. The species of coccidia recovered is Eimeria coturnicis. The results showed that there is an average evolution of mortality of individuals with a rate of 13.33% due to the presence of coccidia with a significant regression (p=0.031). The weight of the quails increases with the age of the animal with a rapid growth rate from the 3rd week onwards. Indeed, the statistical analysis reveals that the evolution of the number did not affect the evolution of the weight (p=0.70) and the GMQ (R=0.52).Keywords: coccidiosis, Coturnix japonica, daily average gain, weight
Procedia PDF Downloads 18718995 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values
Authors: Muhammad A. Alsubaie
Abstract:
An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.Keywords: iterative learning control, singular values, state feedback, load disturbance
Procedia PDF Downloads 16118994 Impact of Endogenous Risk Factors on Risk Cost in KSA PPP Projects
Authors: Saleh Alzahrani, Halim Boussabaine
Abstract:
The Public Private Partnership (PPP) contracts are produced taking into account the reason that the configuration, development, operation, and financing of an open undertaking is to be recompensed to a private gathering inside a solitary contractual structure. PPP venture dangers are ordinarily connected with the improvement and development of another resource and in addition its operation for a considerable length of time. Without a doubt, the most genuine outcomes of dangers amid the development period are value and time overwhelms. These occasions are amongst the most extensively utilized situations as a part of worth for cash investigation dangers. The wellsprings of danger change over the life cycle of a PPP venture. In customary acquirement, the general population segment ordinarily needs to cover all value trouble from these dangers. At any rate there is bounty confirmation to recommend that cost pain is a standard in a percentage of the tasks that are conveyed under customary obtainment. This paper means to research the effect of endogenous dangers on expense overwhelm in KSA PPP ventures. The paper displays a brief writing survey on PPP danger evaluating systems, and after that presents an affiliation model between danger occasions and expense invade in KSA. The paper finishes up with considerations for future examination.Keywords: PPP, risk pricing, impact of risk, Endogenous risks
Procedia PDF Downloads 45518993 Regional Flood-Duration-Frequency Models for Norway
Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu
Abstract:
Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV
Procedia PDF Downloads 7518992 Optimal Designof Brush Roll for Semiconductor Wafer Using CFD Analysis
Authors: Byeong-Sam Kim, Kyoungwoo Park
Abstract:
This research analyzes structure of flat panel display (FPD) such as LCD as quantitative through CFD analysis and modeling change to minimize the badness rate and rate of production decrease by damage of large scale plater at wafer heating chamber at semi-conductor manufacturing process. This glass panel and wafer device with atmospheric pressure or chemical vapor deposition equipment for transporting and transferring wafers, robot hands carry these longer and wider wafers can also be easily handled. As a contact handling system composed of several problems in increased potential for fracture or warping. A non-contact handling system is required to solve this problem. The panel and wafer warping makes it difficult to carry out conventional contact to analysis. We propose a new non-contact transportation system with combining air suction and blowout. The numerical analysis and experimental is, therefore, should be performed to obtain compared to results achieved with non-contact solutions. This wafer panel noncontact handler shows its strength in maintaining high cleanliness levels for semiconductor production processes.Keywords: flat panel display, non contact transportation, heat treatment process, CFD analysis
Procedia PDF Downloads 41818991 Model Canvas and Process for Educational Game Design in Outcome-Based Education
Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro
Abstract:
This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.Keywords: constructive alignment, constructivist theory, educational game, outcome-based education
Procedia PDF Downloads 36118990 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet
Authors: Jan Schmidt, Pierre Köhring
Abstract:
Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.Keywords: analytical model, eddy current, losses, lattice network, permanent magnet
Procedia PDF Downloads 42518989 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology
Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi
Abstract:
This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter
Procedia PDF Downloads 43618988 Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020
Authors: Mustofa Mahmud Al Mamun
Abstract:
Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive.Keywords: business cycle, consumption multipliers, forecasted government spending, investment multipliers, local projection method, zero lower bound
Procedia PDF Downloads 23718987 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes
Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek
Abstract:
Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling
Procedia PDF Downloads 14718986 Let It Rain In Our Conscious To Flourish Our Individual Self Like A Sakura: The Balance Model From Ppt And Rain Spiritual Method Used In A Drugs Prevention Program For Teenagers In A Psychoeducational Manner
Authors: Moise Alin Ionuț Cornel
Abstract:
In a pilot lesson of prevention of consumption drugs in a classroom of teenager`s where the school want them to know how to manage their thoughts and emotions to protect themself an to be strong in an possible environment of drugs consumption. At this classroom was applied the RAIN(Recognize, Accept, Investigation,Non-identify) spiritual method and the balance model from positive and transcultural psychotherapy (PPT) in a manner of a game play for them to understand the methods in an individual experience. The balance model from PPT with his 4 parts and used in 3 ways, and the RAIN spiritual method was used to see how the teenager`s can bring clarity about theirs individual self and how they spend the time and energy in the daily life. The 3 ways of how they can used this model was explained like a analogy with the 3 periods of the SAKURA (Japanese cherry) flourish (kaika, mankai and chiru). The teenager`s received a new perspective and in the same time new tools from the spiritual point of view combined with the psychotherapeutic point of view to manage their thoughts, emotions, time and energy in the form of a psychoeducational game to be able to prevent the use of drugs.Keywords: addiction, drugs consumption prevention education, psychotherapy, Self, Spirituality, teenagers
Procedia PDF Downloads 7318985 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis
Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch
Abstract:
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction
Procedia PDF Downloads 21218984 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model
Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci
Abstract:
One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.Keywords: response to name, autism spectrum disorder, progressive training, ABA
Procedia PDF Downloads 8518983 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand
Authors: Patcharaporn Sakulpong, Wiriya Phokhwang
Abstract:
Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliativeKeywords: community-based palliative care, model, participatory action research, patients with cancer
Procedia PDF Downloads 27218982 Quantitative Analysis of the Trade Potential of the United States with Members of the European Union: A Gravity Model Approach
Authors: Zahid Ahmad, Nauman Ali
Abstract:
This study has estimated the trade between USA and individual members of European Union using Gravity Model of Trade as The USA has a complex trade relationship with the European countries consist of a large number of consumers, which make USA dependent on EU for major of its total world trade. However, among the member of EU, the trade potential of USA with individual members of EU is not known. Panel data techniques e.g. Random Effect, Fixed Effect and Pooled Panel have been applied to secondary quantitative data to analyze the Trade between USA and EU. Trade Potential of USA with individual members of EU has been obtained using the ratio of Actual trade of USA with EU members and the trade as predicted by Gravity Model. The Study concluded that the USA has greater trade potential with 16 members of EU, including Croatia, Portugal and United Kingdom on top. On the other hand, Finland, Ireland, and France are the top countries with which the USA has exhaustive trade potential.Keywords: analytical technique, economic, gravity, international trade, significant
Procedia PDF Downloads 309