Search results for: industrial policies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5591

Search results for: industrial policies

521 Factors Associated with Risky Sexual Behaviour in Adolescent Girls and Young Women in Cambodia: A Systematic Review

Authors: Farwa Rizvi, Joanne Williams, Humaira Maheen, Elizabeth Hoban

Abstract:

There is an increase in risky sexual behavior and unsafe sex in adolescent girls and young women aged 15 to 24 years in Cambodia, which negatively affects their reproductive health by increasing the risk of contracting sexually transmitted infections and unintended pregnancies. Risky sexual behavior includes ‘having sex at an early age, having multiple sexual partners, having sex while under the influence of alcohol or drugs, and unprotected sexual behaviors’. A systematic review of quantitative research conducted in Cambodia was undertaken, using the theoretical framework of the Social Ecological Model to identify the personal, social and cultural factors associated with risky sexual behavior and unsafe sex in young Cambodian women. PRISMA guidelines were used to search databases including Medline Complete, PsycINFO, CINAHL Complete, Academic Search Complete, Global Health, and Social Work Abstracts. Additional searches were conducted in Science Direct, Google Scholar and in the grey literature sources. A risk-of-bias tool developed explicitly for the systematic review of cross-sectional studies was used. Summary item on the overall risk of study bias after the inter-rater response showed that the risk-of-bias was high in two studies, moderate in one study and low in one study. The search strategy included a combination of subject terms and free text terms. The medical subject headings (MeSH) terms included were; contracept* or ‘birth control’ or ‘family planning’ or pregnan* or ‘safe sex’ or ‘protected intercourse’ or ‘unprotected intercourse’ or ‘protected sex’ or ‘unprotected sex’ or ‘risky sexual behaviour*’ or ‘abort*’ or ‘planned parenthood’ or ‘unplanned pregnancy’ AND ( barrier* or obstacle* or challenge* or knowledge or attitude* or factor* or determinant* or choic* or uptake or discontinu* or acceptance or satisfaction or ‘needs assessment’ or ‘non-use’ or ‘unmet need’ or ‘decision making’ ) AND Cambodia*. Initially, 300 studies were identified by using key words and finally, four quantitative studies were selected based on the inclusion criteria. The four studies were published between 2010 and 2016. The study participants ranged in age from 10-24 years, single or married, with 3 to 10 completed years of education. The mean age at sexual debut was reported to be 18 years. Using the perspective of the Social Ecological Model, risky sexual behavior was associated with individual-level factors including young age at sexual debut, low education, unsafe sex under the influence of alcohol and substance abuse, multiple sexual partners or transactional sex. Family level factors included living away from parents, orphan status and low levels of family support. Peer and partner level factors included peer delinquency and lack of condom use. Low socioeconomic status at the society level was also associated with risky sexual behaviour. There is scant research on sexual and reproductive health of adolescent girls and young women in Cambodia. Individual, family and social factors were significantly associated with risky sexual behaviour. More research is required to inform potential preventive strategies and policies that address young women’s sexual and reproductive health.

Keywords: adolescents, high-risk sex, sexual activity, unplanned pregnancies

Procedia PDF Downloads 246
520 Housing Recovery in Heavily Damaged Communities in New Jersey after Hurricane Sandy

Authors: Chenyi Ma

Abstract:

Background: The second costliest hurricane in U.S. history, Sandy landed in southern New Jersey on October 29, 2012, and struck the entire state with high winds and torrential rains. The disaster killed more than 100 people, left more than 8.5 million households without power, and damaged or destroyed more than 200,000 homes across the state. Immediately after the disaster, public policy support was provided in nine coastal counties that constituted 98% of the major and severely damaged housing units in NJ overall. The programs include Individuals and Households Assistance Program, Small Business Loan Program, National Flood Insurance Program, and the Federal Emergency Management Administration (FEMA) Public Assistance Grant Program. In the most severely affected counties, additional funding was provided through Community Development Block Grant: Reconstruction, Rehabilitation, Elevation, and Mitigation Program, and Homeowner Resettlement Program. How these policies individually and as a whole impacted housing recovery across communities with different socioeconomic and demographic profiles has not yet been studied, particularly in relation to damage levels. The concept of community social vulnerability has been widely used to explain many aspects of natural disasters. Nevertheless, how communities are vulnerable has been less fully examined. Community resilience has been conceptualized as a protective factor against negative impacts from disasters, however, how community resilience buffers the effects of vulnerability is not yet known. Because housing recovery is a dynamic social and economic process that varies according to context, this study examined the path from community vulnerability and resilience to housing recovery looking at both community characteristics and policy interventions. Sample/Methods: This retrospective longitudinal case study compared a literature-identified set of pre-disaster community characteristics, the effects of multiple public policy programs, and a set of time-variant community resilience indicators to changes in housing stock (operationally defined by percent of building permits to total occupied housing units/households) between 2010 and 2014, two years before and after Hurricane Sandy. The sample consisted of 51 municipalities in the nine counties in which between 4% and 58% of housing units suffered either major or severe damage. Structural equation modeling (SEM) was used to determine the path from vulnerability to the housing recovery, via multiple public programs, separately and as a whole, and via the community resilience indicators. The spatial analytical tool ArcGIS 10.2 was used to show the spatial relations between housing recovery patterns and community vulnerability and resilience. Findings: Holding damage levels constant, communities with higher proportions of Hispanic households had significantly lower levels of housing recovery while communities with households with an adult >age 65 had significantly higher levels of the housing recovery. The contrast was partly due to the different levels of total public support the two types of the community received. Further, while the public policy programs individually mediated the negative associations between African American and female-headed households and housing recovery, communities with larger proportions of African American, female-headed and Hispanic households were “vulnerable” to lower levels of housing recovery because they lacked sufficient public program support. Even so, higher employment rates and incomes buffered vulnerability to lower housing recovery. Because housing is the "wobbly pillar" of the welfare state, the housing needs of these particular groups should be more fully addressed by disaster policy.

Keywords: community social vulnerability, community resilience, hurricane, public policy

Procedia PDF Downloads 372
519 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa

Authors: Anne Mastamet-Mason

Abstract:

Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.

Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution

Procedia PDF Downloads 207
518 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data

Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour

Abstract:

Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.

Keywords: geothermal exploration, image enhancement, minerals, spectral mapping

Procedia PDF Downloads 363
517 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 102
516 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy

Authors: A. Hakem, Y. Bouafia

Abstract:

Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.

Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon

Procedia PDF Downloads 264
515 Integrating Evidence Into Health Policy: Navigating Cross-Sector and Interdisciplinary Collaboration

Authors: Tessa Heeren

Abstract:

The following proposal pertains to the complex process of successfully implementing health policies that are based on public health research. A systematic review was conducted by myself and faculty at the Cluj School of Public Health in Romania. The reviewed articles covered a wide range of topics, such as barriers and facilitators to multi-sector collaboration, differences in professional cultures, and systemic obstacles. The reviewed literature identified communication, collaboration, user-friendly dissemination, and documentation of processes in the execution of applied research as important themes for the promotion of evidence in the public health decision-making process. This proposal fits into the Academy Health National Health Policy conference because it identifies and examines differences between the worlds of research and politics. Implications and new insights for federal and/or state health policy: Recommendations made based on the findings of this research include using politically relevant levers to promote research (e.g. campaign donors, lobbies, established parties, etc.), modernizing dissemination practices, and reforms in which the involvement of external stakeholders is facilitated without relying on invitations from individual policy makers. Description of how evidence and/or data was or could be used: The reviewed articles illustrated shortcomings and areas for improvement in policy research processes and collaborative development. In general, the evidence base in the field of integrating research into policy lacks critical details of the actual process of developing evidence based policy. This shortcoming in logistical details creates a barrier for potential replication of collaborative efforts described in studies. Potential impact of the presentation for health policy: The reviewed articles focused on identifying barriers and facilitators that arise in cross sector collaboration, rather than the process and impact of integrating evidence into policy. In addition, the type of evidence used in policy was rarely specified, and widely varying interpretations of the definition of evidence complicated overall conclusions. Background: Using evidence to inform public health decision making processes has been proven effective; however, it is not clear how research is applied in practice. Aims: The objectives of the current study were to assess the extent to which evidence is used in public health decision-making process. Methods: To identify eligible studies, seven bibliographic databases, specifically, PubMed, Scopus, Cochrane Library, Science Direct, Web of Science, ClinicalKey, Health and Safety Science Abstract were screened (search dates: 1990 – September 2015); a general internet search was also conducted. Primary research and systematic reviews about the use of evidence in public health policy in Europe were included. The studies considered for inclusion were assessed by two reviewers, along with extracted data on objective, methods, population, and results. Data were synthetized as a narrative review. Results: Of 2564 articles initially identified, 2525 titles and abstracts were screened. Ultimately, 30 articles fit the research criteria by describing how or why evidence is used/not used in public health policy. The majority of included studies involved interviews and surveys (N=17). Study participants were policy makers, health care professionals, researchers, community members, service users, experts in public health.

Keywords: cross-sector, dissemination, health policy, policy implementation

Procedia PDF Downloads 225
514 Effect of Cooking Process on the Antioxidant Activity of Different Variants of Tomato-Based Sofrito

Authors: Ana Beltran Sanahuja, A. Valdés García, Saray Lopez De Pablo Gallego, Maria Soledad Prats Moya

Abstract:

Tomato consumption has greatly increased worldwide in the last few years, mostly due to a growing demand for products like sofrito. In this sense, regular consumption of tomato-based products has been consistently associated with a reduction in the incidence of chronic degenerative diseases. The sofrito is a homemade tomato sauce typical of the Mediterranean area, which contains as main ingredients: tomato, onion, garlic and olive oil. There are also sofrito’s variations by adding other spices which bring at the same time not only color, flavor, smell and or aroma; they also provide medicinal properties, due to their antioxidant power. This protective effect has mainly been attributed to the predominant bioactive compounds present in sofrito, such as lycopene and other carotenoids as well as more than 40 different polyphenols. Regarding the cooking process, it is known that it can modify the properties and the availability of nutrients in sofrito; however, there is not enough information regarding this issue. For this reason, the aim of the present work is to evaluate the cooking effect on the antioxidant capacity of different variants of tomato-based sofrito combined with other spices, through the analysis of total phenols content (TPC) and to evaluate the antioxidant capacity by using the method of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Based on the results obtained, it can be confirmed that the basic sofrito composed of tomato, onion, garlic and olive oil and the sofrito with 1 g of rosemary added, are the ones with the highest content of phenols presenting greater antioxidant power than other industrial sofrito, and that of other variables of sofrito with added thyme or higher amounts of garlic. Moreover, it has been observed that in the elaboration of the tomato-based sofrito, it is possible to cook until 60 minutes, since the cooking process increases the bioavailability of the carotenoids when breaking the cell walls, which weakens the binding forces between the carotenoids and increases the levels of antioxidants present, confirmed both with the TPC and DPPH methods. It can be concluded that the cooking process of different variants of tomato-based sofrito, including spices, can improve the antioxidant capacity. The synergistic effects of different antioxidants may have a greater protective effect; increasing, also, the digestibility of proteins. In addition, the antioxidants help to deactivate the free radicals of diseases such as atherosclerosis, aging, immune suppression, cancer, and diabetes.

Keywords: antioxidants, cooking process, phenols sofrito

Procedia PDF Downloads 141
513 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 333
512 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China

Authors: Weikang Peng

Abstract:

The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.

Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network

Procedia PDF Downloads 20
511 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean

Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi

Abstract:

The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.

Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean

Procedia PDF Downloads 230
510 The Use of Food Industry Bio-Products for Sustainable Lactic Acid Bacteria Encapsulation

Authors: Paulina Zavistanaviciute, Vita Krungleviciute, Elena Bartkiene

Abstract:

Lactic acid bacteria (LAB) are microbial supplements that increase the nutritional, therapeutic, and safety value of food and feed. Often LAB strains are incubated in an expensive commercially available de Man-Rogosa-Sharpe (MRS) medium; the cultures are centrifuged, and the cells are washing with sterile water. Potato juice and apple juice industry bio-products are industrial wastes which may constitute a source of digestible nutrients for microorganisms. Due to their low cost and good chemical composition, potato juice and apple juice production bio- products could have a potential application in LAB encapsulation. In this study, pure LAB (P. acidilactici and P. pentosaceus) were multiplied in a crushed potato juice and apple juice industry bio-products medium. Before using, bio-products were sterilized and filtered. No additives were added to mass, except apple juice industry bioproducts were diluted with sterile water (1/5; v/v). The tap of sterilised mass, and LAB cell suspension (5 mL), containing of 8.9 log10 colony-forming units (cfu) per mL of the P. acidilactici and P. pentosaceus was used to multiply the LAB for 72 h. The final colony number in the potato juice and apple juice bio- products substrate was on average 9.60 log10 cfu/g. In order to stabilize the LAB, several methods of dehydration have been tested: lyophilisation (MilrockKieffer Lane, Kingston, USA) and dehydration in spray drying system (SD-06, Keison, Great Britain). Into the spray drying system multiplied LAB in a crushed potato juice and apple juice bio-products medium was injected in peristaltic way (inlet temperature +60 °C, inlet air temperature +150° C, outgoing air temperature +80 °C, air flow 200 m3/h). After lyophilisation (-48 °C) and spray drying (+150 °C) the viable cell concentration in the fermented potato juice powder was 9.18 ± 0.09 log10 cfu/g and 9.04 ± 0.07 log10 cfu/g, respectively, and in apple mass powder 8.03 ± 0.04 log10 cfu/g and 7.03 ± 0.03 log10 cfu/g, respectively. Results indicated that during the storage (after 12 months) at room temperature (22 +/- 2 ºC) LAB count in dehydrated products was 5.18 log10 cfu/g and 7.00 log10 cfu/g (in spray dried and lyophilized potato juice powder, respectively), and 3.05 log10 cfu/g and 4.10 log10 cfu/g (in spray dried and lyophilized apple juice industry bio-products powder, respectively). According to obtained results, potato juice could be used as alternative substrate for P. acidilactici and P. pentosaceus cultivation, and by drying received powders can be used in food/feed industry as the LAB starters. Therefore, apple juice industry by- products before spray drying and lyophilisation should be modified (i. e. by using different starches) in order to improve its encapsulation.

Keywords: bio-products, encapsulation, lactic acid bacteria, sustainability

Procedia PDF Downloads 276
509 Energy Efficient Refrigerator

Authors: Jagannath Koravadi, Archith Gupta

Abstract:

In a world with constantly growing energy prices, and growing concerns about the global climate changes caused by increased energy consumption, it is becoming more and more essential to save energy wherever possible. Refrigeration systems are one of the major and bulk energy consuming systems now-a-days in industrial sectors, residential sectors and household environment. Refrigeration systems with considerable cooling requirements consume a large amount of electricity and thereby contribute greatly to the running costs. Therefore, a great deal of attention is being paid towards improvement of the performance of the refrigeration systems in this regard throughout the world. The Coefficient of Performance (COP) of a refrigeration system is used for determining the system's overall efficiency. The operating cost to the consumer and the overall environmental impact of a refrigeration system in turn depends on the COP or efficiency of the system. The COP of a refrigeration system should therefore be as high as possible. Slight modifications in the technical elements of the modern refrigeration systems have the potential to reduce the energy consumption, and improvements in simple operational practices with minimal expenses can have beneficial impact on COP of the system. Thus, the challenge is to determine the changes that can be made in a refrigeration system in order to improve its performance, reduce operating costs and power requirement, improve environmental outcomes, and achieve a higher COP. The opportunity here, and a better solution to this challenge, will be to incorporate modifications in conventional refrigeration systems for saving energy. Energy efficiency, in addition to improvement of COP, can deliver a range of savings such as reduced operation and maintenance costs, improved system reliability, improved safety, increased productivity, better matching of refrigeration load and equipment capacity, reduced resource consumption and greenhouse gas emissions, better working environment, and reduced energy costs. The present work aims at fabricating a working model of a refrigerator that will provide for effective heat recovery from superheated refrigerant with the help of an efficient de-superheater. The temperature of the refrigerant and water in the de-super heater at different intervals of time are measured to determine the quantity of waste heat recovered. It is found that the COP of the system improves by about 6% with the de-superheater and the power input to the compressor decreases by 4 % and also the refrigeration capacity increases by 4%.

Keywords: coefficiency of performance, de-superheater, refrigerant, refrigeration capacity, heat recovery

Procedia PDF Downloads 320
508 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 177
507 The Shrinking of the Pink Wave and the Rise of the Right-Wing in Latin America

Authors: B. M. Moda, L. F. Secco

Abstract:

Through free and fair elections and others less democratic processes, Latin America has been gradually turning into a right-wing political region. In order to understand these recent changes, this paper aims to discuss the origin and the traits of the pink wave in the subcontinent, the reasons for its current rollback and future projections for left-wing in the region. The methodology used in this paper will be descriptive and analytical combined with secondary sources mainly from the social and political sciences fields. The canons of the Washington Consensus was implemented by the majority of the Latin American governments in the 80s and 90s under the social democratic and right-wing parties. The neoliberal agenda caused political, social and economic dissatisfaction bursting into a new political configuration for the region. It started in 1998 when Hugo Chávez took the office in Venezuela through the Fifth Republic Movement under the socialist flag. From there on, Latin America was swiped by the so-called ‘pink wave’, term adopted to define the rising of self-designated left-wing or center-left parties with a progressive agenda. After Venezuela, countries like Chile, Brazil, Argentina, Uruguay, Bolivia, Equator, Nicaragua, Paraguay, El Salvador and Peru got into the pink wave. The success of these governments was due a post-neoliberal agenda focused on cash transfers programs, increasing of public spending, and the straightening of national market. The discontinuation of the preference for the left-wing started in 2012 with the coup against Fernando Lugo in Paraguay. In 2015, the chavismo in Venezuela lost the majority of the legislative seats. In 2016, an impeachment removed the Brazilian president Dilma Rousself from office who was replaced by the center-right vice-president Michel Temer. In the same year, Mauricio Macri representing the right-wing party Proposta Republicana was elected in Argentina. In 2016 center-right and liberal, Pedro Pablo Kuczynski was elected in Peru. In 2017, Sebastián Piñera was elected in Chile through the center-right party Renovación Nacional. The pink wave current rollback points towards some findings that can be arranged in two fields. Economically, the 2008 financial crisis affected the majority of the Latin American countries and the left-wing economic policies along with the end of the raw materials boom and the subsequent shrinking of economic performance opened a flank for popular dissatisfaction. In Venezuela, the 2014 oil crisis reduced the revenues for the State in more than 50% dropping social spending, creating an inflationary spiral, and consequently loss of popular support. Politically, the death of Hugo Chavez in 2013 weakened the ‘socialism of the twenty first century’ ideal, which was followed by the death of Fidel Castro, the last bastion of communism in the subcontinent. In addition, several cases of corruption revealed during the pink wave governments made the traditional politics unpopular. These issues challenge the left-wing to develop a future agenda based on innovation of its economic program, improve its legal and political compliance practices, and to regroup its electoral forces amid the social movements that supported its ascension back in the early 2000s.

Keywords: Latin America, political parties, left-wing, right-wing, pink wave

Procedia PDF Downloads 240
506 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 206
505 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet

Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez

Abstract:

Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.

Keywords: plastic deformation, strain, sheet drawing, magnesium

Procedia PDF Downloads 109
504 Experimenting with Clay 3D Printing Technology to Create an Undulating Facade

Authors: Naeimehsadat Hosseininam, Rui Wang, Dishita Shah

Abstract:

In recent years, new experimental approaches with the help of the new technology have bridged the gaps between the application of natural materials and creating unconventional forms. Clay has been one of the oldest building materials in all ancient civilizations. The availability and workability of clay have contributed to the widespread application of this material around the world. The aim of this experimental research is to apply the Clay 3D printing technology to create a load bearing and visually dynamic and undulating façade. Creation of different unique pieces is the most significant goal of this research which justifies the application of 3D printing technology instead of the conventional mass industrial production. This study provides an abbreviated overview of the similar cases which have used the Clay 3D printing to generate the corresponding prototypes. The study of these cases also helps in understanding the potential and flexibility of the material and 3D printing machine in developing different forms. In the next step, experimental research carried out by 3D printing of six various options which designed considering the properties of clay as well as the methodology of them being 3D printed. Here, the ratio of water to clay (W/C) has a significant role in the consistency of the material and the workability of the clay. Also, the size of the selected nozzle impacts the shape and the smoothness of the final surface. Moreover, the results of these experiments show the limitations of clay toward forming various slopes. The most notable consequence of having steep slopes in the prototype is an unpredicted collapse which is the result of internal tension in the material. From the six initial design ideas, the final prototype selected with the aim of creating a self-supported component with unique blocks that provides a possibility of installing the insulation system within the component. Apart from being an undulated façade, the presented prototype has the potential to be used as a fence and an interior partition (double-sided). The central shaft also provides a space to run services or insulation in different parts of the wall. In parallel to present the capability and potential of the clay 3D printing technology, this study illustrates the limitations of this system in some certain areas. There are inevitable parameters such as printing speed, temperature, drying speed that need to be considered while printing each piece. Clay 3D printing technology provides the opportunity to create variations and design parametric building components with the application of the most practiced material in the world.

Keywords: clay 3D printing, material capability, undulating facade, load bearing facade

Procedia PDF Downloads 141
503 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence

Authors: Parisa Gharibi Khoshkar

Abstract:

The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.

Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology

Procedia PDF Downloads 72
502 The Need for Automation in the Domestic Food Processing Sector and its Impact

Authors: Shantam Gupta

Abstract:

The objective of this study is to address the critical need for automation in the domestic food processing sector and study its impact. Food is the one of the most basic physiological needs essential for the survival of a living being. Some of them have the capacity to prepare their own food (like most plants) and henceforth are designated as primary food producers; those who depend on these primary food producers for food form the primary consumers’ class (herbivores). Some of the organisms relying on the primary food are the secondary food consumers (carnivores). There is a third class of consumers called tertiary food consumers/apex food consumers that feed on both the primary and secondary food consumers. Humans form an essential part of the apex predators and are generally at the top of the food chain. But still further disintegration of the food habits of the modern human i.e. Homo sapiens, reveals that humans depend on other individuals for preparing their own food. The old notion of eating raw/brute food is long gone and food processing has become very trenchant in lives of modern human. This has led to an increase in dependence on other individuals for ‘processing’ the food before it can be actually consumed by the modern human. This has led to a further shift of humans in the classification of food chain of consumers. The effects of the shifts shall be systematically investigated in this paper. The processing of food has a direct impact on the economy of the individual (consumer). Also most individuals depend on other processing individuals for the preparation of food. This dependency leads to establishment of a vital link of dependency in the food web which when altered can adversely affect the food web and can have dire consequences on the health of the individual. This study investigates the challenges arising out due to this dependency and the impact of food processing on the economy of the individual. A comparison of Industrial food processing and processing at domestic platforms (households and restaurants) has been made to provide an idea about the present scenario of automation in the food processing sector. A lot of time and energy is also consumed while processing food at home for consumption. The high frequency of consumption of meals (greater than 2 times a day) makes it even more laborious. Through the medium of this study a pressing need for development of an automatic cooking machine is proposed with a mission to reduce the inter-dependency & human effort of individuals required for the preparation of food (by automation of the food preparation process) and make them more self-reliant The impact of development of this product has also further been profoundly discussed. Assumption used: The individuals those who process food also consume the food that they produce. (They are also termed as ‘independent’ or ‘self-reliant’ modern human beings.)

Keywords: automation, food processing, impact on economy, processing individual

Procedia PDF Downloads 470
501 Familiarity with Engineering Project Management And Their Duties In Projects

Authors: Mokhtar Nikgoo

Abstract:

Today's industrial world has undergone tremendous changes in certain periods. These changes are called environmental changes. And they have a direct impact on organizations and bodies. Therefore, the importance of knowing these changes is clear. This importance has caused the manufacturing organizations to move towards multiple products and constantly change and expand their system. This research tries to show how the organization moves in this category by defining the basic steps of implementing a project. One of the most important features of a hard-to-order production organization is the definition of different production projects from different customers. Therefore, the lack of sufficient understanding of the type of work causes the project to be defined for the organization in question, and the managers of the organization (in every organizational level) are constantly involved with different projects. In the implementation of the production project of the aforementioned organizations, directing the facilities and people of the organization towards the implementation of the project is of particular importance. Therefore, it is felt necessary to define the project manager and his basic duties. Considering the importance of this topic, the project chapter deals with project management and its importance and examines all the different issues in that category from the perspective of implementation. A project includes certain activities of the organization that require the use of different resources and all the activities of the organization in order to implement the project with defined facilities and at the designated times. Project management is planning, organizing and controlling the organization's resources for a short-term goal that has been created for short-term and medium-term goals and objectives. Project management has the important task of centering and integrating (coordinating) task and line managers. In other words, project management requires having a strong and appropriate relationship with the internal people of the system to carry out the assigned activities and must have a general and technical knowledge related to various activities in the project environment. It seems that everything with project management in It is communication. One of the characteristics of production organizations under the order is the relationship between the customer (customers) and the organization until the completion of the defined project. Due to the nature of the work, it is necessary for a person to establish this relationship between the client and the organization's people and to establish this relationship in such a way that it does not cause a lack of coordination in the organization's activities. Therefore, project management has a very important role at this stage, because the relationship between the client and his organization will be any problems and problems and points of view that the client has, he must inform the management so that he can implement the cases with its analysis and special processes. To be transferred to other departments and line managers.

Keywords: project management, crisis management, project delays bill, project duration

Procedia PDF Downloads 58
500 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 278
499 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence

Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan

Abstract:

It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.

Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging

Procedia PDF Downloads 316
498 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 123
497 Implications of Agricultural Subsidies Since Green Revolution: A Case Study of Indian Punjab

Authors: Kriti Jain, Sucha Singh Gill

Abstract:

Subsidies have been a major part of agricultural policies around the world, and more extensively since the green revolution in developing countries, for the sake of attaining higher agricultural productivity and achieving food security. But entrenched subsidies lead to distorted incentives and promote inefficiencies in the agricultural sector, threatening the viability of these very subsidies and sustainability of the agricultural production systems, posing a threat to the livelihood of farmers and laborers dependent on it. This paper analyzes the economic and ecological sustainability implications of prolonged input and output subsidies in agriculture by studying the case of Indian Punjab, an agriculturally developed state responsible for ensuring food security in the country when it was facing a major food crisis. The paper focuses specifically on the environmentally unsustainable cropping pattern changes as a result of Minimum Support Price (MSP) and assured procurement and on the resource use efficiency and cost implications of power subsidy for irrigation in Punjab. The study is based on an analysis of both secondary and primary data sources. Using secondary data, a time series analysis was done to capture the changes in Punjab’s cropping pattern, water table depth, fertilizer consumption, and electrification of agriculture. This has been done to examine the role of price and output support adopted to encourage the adoption of green revolution technology in changing the cropping structure of the state, resulting in increased input use intensities (especially groundwater and fertilizers), which harms the ecological balance and decreases factor productivity. Evaluation of electrification of Punjab agriculture helped evaluate the trend in electricity productivity of agriculture and how free power imposed further pressure on the extant agricultural ecosystem. Using data collected from a primary survey of 320 farmers in Punjab, the extent of wasteful application of groundwater irrigation, water productivity of output, electricity usage, and cost of irrigation driven electricity subsidy to the exchequer were estimated for the dominant cropping pattern amongst farmers. The main findings of the study revealed how because of a subsidy has driven agricultural framework, Punjab has lost area under agro climatically suitable and staple crops and moved towards a paddy-wheat cropping system, that is gnawing away the state’s natural resources like water table has been declining at a significant rate of 25 cms per year since 1975-76, and excessive and imbalanced fertilizer usage has led to declining soil fertility in the state. With electricity-driven tubewells as the major source of irrigation within a regime of free electricity and water-intensive crop cultivation, there is both wasteful application of irrigation water and electricity in the cultivation of paddy crops, burning an unproductive hole in the exchequer’s pocket. There is limited access to both agricultural extension services and water-conserving technology, along with policy imbalance, keeping farmers in an intensive and unsustainable production system. Punjab agriculture is witnessing diminishing returns to factor, which under the business-as-usual scenario, will soon enter the phase of negative returns to factor.

Keywords: cropping pattern, electrification, subsidy, sustainability

Procedia PDF Downloads 186
496 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises

Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou

Abstract:

Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).

Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development

Procedia PDF Downloads 190
495 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction

Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand

Abstract:

Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.

Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids

Procedia PDF Downloads 179
494 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties

Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko

Abstract:

The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.

Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography

Procedia PDF Downloads 185
493 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 265
492 Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation

Authors: Mannar R. Maurya, Bithika Sarkar, Fernando Avecilla

Abstract:

Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol.

Keywords: oxovanadium(IV)/dioxidovanadium(V) complexes, NMR spectroscopy, Crystal structure, peroxidase mimic activity towards oxidation of pyrogallol, Oxidation of 1-phenylethanol

Procedia PDF Downloads 341