Search results for: artificial intelligence and genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5678

Search results for: artificial intelligence and genetic algorithms

608 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply

Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele

Abstract:

In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.

Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant

Procedia PDF Downloads 178
607 Exploring the Correlation between Body Constitution of an Individual as Per Ayurveda and Gut Microbiome in Healthy, Multi Ethnic Urban Population in Bangalore, India

Authors: Shalini TV, Gangadharan GG, Sriranjini S Jaideep, ASN Seshasayee, Awadhesh Pandit

Abstract:

Introduction: Prakriti (body-mind constitution of an individual) is a conventional, customized and unique understanding of which is essential for the personalized medicine described in Ayurveda, Indian System of Medicine. Based on the Doshas( functional, bio humoral unit in the body), individuals are categorized into three major Prakriti- Vata, Pitta, and Kapha. The human gut microbiome hosts plenty of highly diverse and metabolically active microorganisms, mainly dominated by the bacteria, which are known to influence the physiology of an individual. Few researches have shown the correlation between the Prakriti and the biochemical parameters. In this study, an attempt was made to explore any correlation between the Prakriti (phenotype of an individual) with the Genetic makeup of the gut microbiome in healthy individuals. Materials and methods: 270 multi-ethnic, healthy volunteers of both sex with the age group between 18 to 40 years, with no history of antibiotics in the last 6 months were recruited into three groups of Vata, Pitta, and Kapha. The Prakriti of the individual was determined using Ayusoft, a software designed by CDAC, Pune, India. The volunteers were subjected to initial screening for the assessment of their height, weight, Body Mass Index, Vital signs and Blood investigations to ensure they are healthy. The stool and saliva samples of the recruited volunteers were collected as per the standard operating procedure developed, and the bacterial DNA was isolated using Qiagen kits. The extracted DNA was subjected to 16s rRNA sequencing using the Illumina kits. The sequencing libraries are targeting the variable V3 and V4 regions of the 16s rRNA gene. Paired sequencing was done on the MiSeq system and data were analyzed using the CLC Genomics workbench 11. Results: The 16s rRNA sequencing of the V3 and V4 regions showed a diverse pattern in both the oral and stool microbial DNA. The study did not reveal any specific pattern of bacterial flora amongst the Prakriti. All the p-values were more than the effective alpha values for all OTUs in both the buccal cavity and stool samples. Therefore, there was no observed significant enrichment of an OTU in the patient samples from either the buccal cavity or stool samples. Conclusion: In healthy volunteers of multi-ethnicity, due to the influence of the various factors, the correlation between the Prakriti and the gut microbiome was not seen.

Keywords: gut microbiome, ayurveda Prakriti, sequencing, multi-ethnic urban population

Procedia PDF Downloads 135
606 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 116
605 Teachers’ Protective Factors of Resilience Scale: Factorial Structure, Validity and Reliability Issues

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Recently developed scales addressed -specifically- teachers’ resilience. Although they profited from the field, they do not include some of the critical protective factors of teachers’ resilience identified in the literature. To address this limitation, we aimed at designing a more comprehensive scale for measuring teachers' resilience which encompasses various personal and environmental protective factors. To this end, two studies were carried out. In Study 1, 407 primary school teachers were tested with the new scale, the Teachers’ Protective Factors of Resilience Scale (TPFRS). Similar scales, such as the Multidimensional Teachers’ Resilience Scale and the Teachers’ Resilience Scale), were used to test the convergent validity, while the Maslach Burnout Inventory and the Teachers’ Sense of Efficacy Scale was used to assess the discriminant validity of the new scale. The factorial structure of the TPFRS was checked with confirmatory factor analysis and a good fit of the model to the data was found. Next, item response theory analysis using a two-parameter model (2PL) was applied to check the items within each factor. It revealed that 9 items did not fit the corresponding factors well and they were removed. The final version of the TPFRS includes 29 items, which assess six protective factors of teachers’ resilience: values and beliefs (5 items, α=.88), emotional and behavioral adequacy (6 items, α=.74), physical well-being (3 items, α=.68), relationships within the school environment, (6 items, α=.73) relationships outside the school environment (5 items, α=.84), and the legislative framework of education (4 items, α=.83). Results show that it presents a satisfactory convergent and discriminant validity. Study 2, in which 964 primary and secondary school teachers were tested, confirmed the factorial structure of the TPFRS as well as its discriminant validity, which was tested with the Schutte Emotional Intelligence Scale-Short Form. In conclusion, our results confirmed that the TPFRS is a valid instrument for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession. In conclusion, our results showed that the TPFRS is a new multi-dimensional instrument valid for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession.

Keywords: resilience, protective factors, teachers, item response theory

Procedia PDF Downloads 99
604 Analytical Characterization of TiO2-Based Nanocoatings for the Protection and Preservation of Architectural Calcareous Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Mahmoud A. Adam, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage especially which located in open areas may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, air pollution, soluble salts, Rh/temperature, and biodeterioration are the main causes of decay of stone building materials. The development and application of self-cleaning treatments on historical and architectural stone surfaces could be a significant improvement in conservation, protection, and maintenance of cultural heritage. In this paper, nanometric titanium dioxide has become a promising photocatalytic material owing to its ability to catalyze the complete degradation of many organic contaminants and represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. The obtained nano-TiO2 coatings were applied on travertine (Marble and limestone often used in historical and monumental buildings). The efficacy of the treatments has been evaluated after coating and artificial thermal aging, through capillary water absorption, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the coated surface, while the surface morphology before and after treatment was examined by scanning electron microscopy (SEM). The changes of molecular structure occurring in treated samples were spectroscopy studied by FTIR-ATR, and Colorimetric measurements have been performed to evaluate the optical appearance. All the results get together with the apparent effect that coated TiO2 nanoparticles is an innovative method, which enhanced the durability of stone surfaces toward UV aging, improved their resistance to relative humidity and temperature, self-cleaning photo-induced effects are well evident, and no alteration of the original features.

Keywords: architectural calcareous stone monuments, coating, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 254
603 Effects of a Dwarfing Gene sd1-d (Dee-Geo-Woo-Gen Dwarf) on Yield and Related Traits in Rice: Preliminary Report

Authors: M. Bhattarai, B. B. Rana, M. Kamimukai, I. Takamure, T. Kawano, M. Murai

Abstract:

The sd1-d allele at the sd1 locus on chromosome 1, originating from Taiwanese variety Dee-geo-woo-gen, has been playing important role for developing short-culm and lodging-resistant indica varieties such as IR36 in rice. The dominant allele SD1 for long culm at the locus is differentiated into SD1-in and SD1-ja which are harbored in indica and japonica subspecies’s, respectively. The sd1-d of an indica variety IR36 was substituted with SD1-in or SD1-ja by recurrent backcrosses of 17 times with IR36, and two isogenic tall lines regarding the respective dominant alleles were developed by using an indica variety IR5867 and a japonica one ‘Koshihikari’ as donors, which were denoted by '5867-36' and 'Koshi-36', respectively. The present study was conducted to examine the effect of sd1-d on yield and related traits as compared with SD1-in and SD1-ja, by using the two isogenic tall lines. Seedlings of IR36 and the two isogenic lines were transplanted on an experimental field of Kochi University, by the planting distance of 30 cm × 15 cm with two seedlings per hill, on May 3, 2017. Chemical fertilizers were supplied by basal application and top-dressing at a rate of 8.00, 6.57 and 7.52 g/m², respectively, for N, P₂O₅ and K₂O in total. Yield, yield components, and other traits were measured. Culm length (cm) was in the order of 5867-36 (101.9) > Koshi-36 (80.1) > IR36 (60.0), where '>' indicates statistically significant difference at the 5% level. Accordingly, sd1-d reduced culm by 41.9 and 20.1 cm, compared with SD1-in and SD1-ja, respectively, and the effect of elongating culm was higher in the former allele than in the latter one. Total brown rice yield (g/m²), including unripened grains, was in the order of IR36 (611) ≧ 5867-36 (586) ≧ Koshi-36 (572), indicating non-significant differences among them. Yield-1.5mm sieve (g/m²) was in the order of IR36 (596) ≧ 5867-36 (575) ≧ Koshi-36 (558). Spikelet number per panicle was in the order of 5867-36 (89.2) ≧ IR36 (84.7) ≧ Koshi-36 (79.8), and 5867-36 > Koshi-36. Panicle number per m² was in the order of IR36 (428) ≧ Koshi-36 (403) ≧ 5867-36 (353), and IR36 > 5867-36, suggesting that sd1-d increased number of panicles compared with SD1-in. Ripened-grain percentage-1.5mm sieve was in the order of Koshi-36 (86.0) ≧ 5867-36 (85.0) ≧ IR36 (82.7), and Koshi-36 > IR36. Thousand brown-rice-grain weight-1.5mm sieve (g) was in the order of 5867-36 (21.5) > Koshi-36 (20.2) ≧ IR36 (19.9). Total dry weight at maturity (g/m²) was in the order of 5867-36 (1404 ) ≧ IR36 (1310) ≧ Kosihi-36 (1290). Harvest index of total brown rice (%) was in the order of IR36 (39.6) > Koshi-36 (37.7) > 5867-36 (35.5). Hence, sd1-d did not exert significant effect on yield in indica genetic background. However, lodging was observed from the late stage of maturity in 5867-36 and Koshi-36, particularly in the former, which was principally due to their long culms. Consequently, sd1-d enables higher yield with higher fertilizer application, by enhancing lodging resistance, particularly in indica subspecies.

Keywords: rice, dwarfing gene, sd1-d, SD1-in, SD1-ja, yield

Procedia PDF Downloads 170
602 A Rare Case Report of Non-Langerhans Cell Cutaneous Histiocytosis in a 6-Month Old Infant

Authors: Apoorva D. R.

Abstract:

INTRODUCTION: Hemophagocytic lymphohistiocytosis (HLH) is a severe, potentially fatal syndrome in which there is excessive immune activation. The disease is seen in children and people of all ages, but infants from birth to 18 months are most frequently affected. HLH is a sporadic or familial condition that can be triggered by various events that disturb immunological homeostasis. In cases with a genetic predisposition and sporadic occurrences, infection is a frequent trigger. Because of the rarity of this disease, the diverse clinical presentation, and the lack of specificity in the clinical and laboratory results, prompt treatment is essential, but the biggest obstacle to a favorable outcome is frequently a delay in identification. CASE REPORT: Here we report a case of a 6-month-old male infant who presented to the dermatology outpatient with disseminated skin lesions present over the face, abdomen, scalp, and bilateral upper and lower limbs for the past month. The lesions were insidious in onset, initially started over the abdomen, and gradually progressed to involve other body parts. The patient also had a history of fever which was moderate in grade, on and off in nature for 1 month. There were no significant complaints in the past, family, or drug history. There was no history of feeding difficulties in the baby. Parents gave a history of developmental milestones appropriate for age. Examination findings include multiple well-defined monomorphic erythematous papules with a central crater present over bilateral cheeks. Few lichenoid shiny papules present over bilateral arms, legs, and abdomen. Ultrasound of the abdomen and pelvis showed mild degree hepatosplenomegaly, intraabdominal lymphadenopathy, and bilateral inguinal lymphadenopathy. Routine blood investigations showed anemia and lymphopenia. Multiple X-rays of the skull, chest, and bilateral upper and lower limbs were done and were normal. Histopathology features were suggestive of non-Langerhans cell cutaneous histiocytosis. CONCLUSION: HLH is a fatal and rare disease. A high level of suspicion and an interdisciplinary approach among experienced clinicians, pathologists, and microbiologists to define the diagnosis and causative disease are key to diagnosing this case. Early detection and treatment can reduce patient morbidity and mortality.

Keywords: histiocytosis, non langerhans cell, case report, fatal, rare

Procedia PDF Downloads 88
601 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples

Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson

Abstract:

Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.

Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors

Procedia PDF Downloads 237
600 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 89
599 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 215
598 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 58
597 Establishing Community-Based Pro-Biodiversity Enterprise in the Philippines: A Climate Change Adaptation Strategy towards Agro-Biodiversity Conservation and Local Green Economic Development

Authors: Dina Magnaye

Abstract:

In the Philippines, the performance of the agricultural sector is gauged through crop productivity and returns from farm production rather than the biodiversity in the agricultural ecosystem. Agricultural development hinges on the overall goal of increasing productivity through intensive agriculture, monoculture system, utilization of high yielding varieties in plants, and genetic upgrading in animals. This merits an analysis of the role of agro-biodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. These enterprises conserve biodiversity while equitably sharing production income in the utilization of biological resources. The study aims to determine how community-based pro-biodiversity enterprises become instrumental in local climate change adaptation and agro-biodiversity conservation as input to local green economic development planning. It also involves an assessment of the role of agrobiodiversity in terms of increasing productivity, food security and economic returns from community-based pro-biodiversity enterprises. The perceptions of the local community members both in urban and upland rural areas on community-based pro-biodiversity enterprises were evaluated. These served as a basis in developing a planning modality that can be mainstreamed in the management of local green economic enterprises to benefit the environment, provide local income opportunities, conserve species diversity, and sustain environment-friendly farming systems and practices. The interviews conducted with organic farmer-owners, entrepreneur-organic farmers, and organic farm workers revealed that pro-biodiversity enterprise such as organic farming involved the cyclic use of natural resources within the carrying capacity of a farm; recognition of the value of tradition and culture especially in the upland rural area; enhancement of socio-economic capacity; conservation of ecosystems in harmony with nature; and climate change mitigation. The suggested planning modality for community-based pro-biodiversity enterprises for a green economy encompasses four (4) phases to include community resource or capital asset profiling; stakeholder vision development; strategy formulation for sustained enterprises; and monitoring and evaluation.

Keywords: agro-biodiversity, agro-biodiversity conservation, local green economy, organic farming, pro-biodiversity enterprise

Procedia PDF Downloads 362
596 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 155
595 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control

Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima

Abstract:

The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.

Keywords: Aedes aegypti, bioassay, larvicida, vector control

Procedia PDF Downloads 129
594 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
593 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 358
592 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 444
591 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 225
590 Fahr Dsease vs Fahr Syndrome in the Field of a Case Report

Authors: Angelis P. Barlampas

Abstract:

Objective: The confusion of terms is a common practice in many situations of the everyday life. But, in some circumstances, such as in medicine, the precise meaning of a word curries a critical role for the health of the patient. Fahr disease and Fahr syndrome are often falsely used interchangeably, but they are two different conditions with different physical histories of different etiology and different medical management. A case of the seldom Fahr disease is presented, and a comparison with the more common Fahr syndrome follows. Materials and method: A 72 years old patient came to the emergency department, complaining of some kind of non specific medal disturbances, like anxiety, difficulty of concentrating, and tremor. The problems had a long course, but he had the impression of getting worse lately, so he decided to check them. Past history and laboratory tests were unremarkable. Then, a computed tomography examination was ordered. Results: The CT exam showed bilateral, hyperattenuating areas of heavy, dense calcium type deposits in basal ganglia, striatum, pallidum, thalami, the dentate nucleus, and the cerebral white matter of frontal, parietal and iniac lobes, as well as small areas of the pons. Taking into account the absence of any known preexisting illness and the fact that the emergency laboratory tests were without findings, a hypothesis of the rare Fahr disease was supposed. The suspicion was confirmed with further, more specific tests, which showed the lack of any other conditions which could probably share the same radiological image. Differentiating between Fahr disease and Fahr syndrome. Fahr disease: Primarily autosomal dominant Symmetrical and bilateral intracranial calcifications The patient is healthy until the middle age Absence of biochemical abnormalities. Family history consistent with autosomal dominant Fahr syndrome :Earlier between 30 to 40 years old. Symmetrical and bilateral intracranial calcifications Endocrinopathies: Idiopathic hypoparathyroidism, secondary hypoparathyroidism, hyperparathyroidism, pseudohypoparathyroidism ,pseudopseudohypoparathyroidism, e.t.c The disease appears at any age There are abnormal laboratory or imaging findings. Conclusion: Fahr disease and Fahr syndrome are not the same illness, although this is not well known to the inexperienced doctors. As clinical radiologists, we have to inform our colleagues that a radiological image, along with the patient's history, probably implies a rare condition and not something more usual and prompt the investigation to the right route. In our case, a genetic test could be done earlier and reveal the problem, and thus avoiding unnecessary and specific tests which cost in time and are uncomfortable to the patient.

Keywords: fahr disease, fahr syndrome, CT, brain calcifications

Procedia PDF Downloads 62
589 The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures

Authors: Faezeh Eslamian, Zhiming Qi, Michael J. Tate

Abstract:

Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils.

Keywords: leaching, lime, phosphorus, soil texture

Procedia PDF Downloads 175
588 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
587 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria

Authors: Shehu Isyaku

Abstract:

The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.

Keywords: business environment, sustainability, small and medium enterprises, external business environment

Procedia PDF Downloads 53
586 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels

Authors: Dovile Petkeviciute-Barysiene

Abstract:

Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).

Keywords: automation levels, information processing, legal judgment and decision making, legal technology

Procedia PDF Downloads 142
585 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3

Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio

Abstract:

Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.

Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose

Procedia PDF Downloads 125
584 Optical Flow Technique for Supersonic Jet Measurements

Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi

Abstract:

This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer

Procedia PDF Downloads 312
583 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 174
582 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 277
581 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo

Abstract:

Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.

Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate

Procedia PDF Downloads 140
580 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 208
579 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429