Search results for: tumor antigens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 884

Search results for: tumor antigens

404 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency

Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade

Abstract:

Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".

Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency

Procedia PDF Downloads 304
403 Protective Effect of Thymoquinone against Nephrotoxicity Induced by Cadmium in Rats

Authors: Amr A. Fouad, Hamed A. Alwadaani, Iyad Jresat

Abstract:

The present study investigated the protective effect of thymoquinone (TQ), against cadmium-induced kidney injury in rats. Cadmium chloride (1.2 mg Cd/kg/day, s.c.), was given for nine weeks. TQ treatment (40 mg/kg/day, p.o.) started on the same day of cadmium administration and continued for nine weeks. TQ significantly decreased serum creatinine, renal malondialdehyde and nitric oxide, and significantly increased renal reduced glutathione in rats received cadmium. Histopathological examination showed that TQ markedly minimized renal tissue damage induced by cadmium. Immunohistochemical analysis revealed that TQ markedly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, and caspase-3 in renal tissue. It was concluded that TQ significantly protected against cadmium nephrotoxicity in rats, through its antioxidant, antiinflammatory, and antiapoptotic actions.

Keywords: thymoquinone, cadmium, kidney, rats

Procedia PDF Downloads 417
402 Protective Effect of Hesperidin against Cyclophosphamide Hepatotoxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of hesperidin was investigated in rats exposed to liver injury induced by a single intraperitoneal injection of cyclophosphamide (CYP) at a dose of 150 mg kg-1. Hesperidin treatment (100 mg kg-1/day, orally) was applied for seven days, starting five days before CYP administration. Hesperidin significantly decreased the CYP-induced elevations of serum alanine aminotransferase, and hepatic malondialdehyde and myeloperoxidase activity, significantly prevented the depletion of hepatic glutathione peroxidase activity resulted from CYP administration. Also, hesperidin ameliorated the CYP-induced liver tissue injury observed by histopathological examination. In addition, hesperidin decreased the CYP-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, Fas ligand, and caspase-9 in liver tissue. It was concluded that hesperidin may represent a potential candidate to protect against CYP-induced hepatotoxicity.

Keywords: hesperidin, cyclophosphamide, liver, rats

Procedia PDF Downloads 319
401 Synthesis of [1-(Substituted-Sulfonyl)-Piperidin-4-yl]-(2,4-Difluoro-Phenyl)-Methanone Oximes and Their Biological Activity

Authors: L. Mallesha, C. S. Karthik, P. Mallu

Abstract:

A series of new [1-(substituted-benzoyl)-piperidin-4-yl]-(2,4-difluoro-phenyl)-methanone oxime derivatives, 3(a-f) were synthesized and characterized by different spectral studies. All compounds were evaluated for their in vitro antibacterial activity against bacterial strains. These compounds were screened for their antioxidant activity by DPPH• and Fe2+ chelating assay. Antiproliferative effects were evaluated using the MTT assay method against two human cancer cell lines and one astrocytoma brain tumor cell line. Compound 3b exhibited moderate antibacterial activity when compared with other compounds. All the compounds showed antioxidant activity, where compound 3f was the best radical scavenger and Fe2+ ion scavenger. Compounds, 3b, and 3d showed good activity on all cell lines, whereas the other compounds in the series exhibited moderate activity.

Keywords: Piperidine, antibacterial, antioxidant, antiproliferative

Procedia PDF Downloads 412
400 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 58
399 Evaluation of Existence of Antithyroid Antibodies, Anti-Thyroid Peroxidase and Anti-Thyroglobulin in Patients with Hepatitis C Viral Infections

Authors: Junaid Mahmood Alam, Sana Anwar, Sarah Sughra Asghar

Abstract:

Chronic hepatitis or Hepatitis C viral (HCV) infection has been identified as one of the factors that could elicit autoimmune disease resulting in the development of auto-antibodies. Furthermore, HCV is implicated in contravening of forbearance to antigens, therefore, inciting auto-reactivity. In this regard, several near and past studies noted the prevalence of thyroid dysfunction and production of anti-thyroid antibodies (ATAb) such as anti-thyroid peroxidase (AntiTPO) and anti-thyroglobulin (AntiTG) in patients with HCV. Likewise, one of the etiologies of augmentation of thyroid disease is basically interferon therapy for HCV infections, for which a number of autoimmune diseases have been noted including Grave’s disease, Hishimoto thyroiditis. A prospectively case-control study was therefore carried out at department of clinical biochemistry lab services and chemical pathology in collaboration with department of clinical microbiology, at Liaquat National Hospital and Medical College, Karachi Pakistan for the period January 2015 to December 2017. Two control groups were inducted for comparison purpose, control group 1 = without HCV infection and with thyroid disorders (n = 20), control group 2 = with HCV infection and without thyroid disorders (n = 20), whereas HCV infected were n = 40 where more than half were noted to be positive for either of HCV IgG and Ag. In HCV group, patients with existing sub-clinical hypothyroidism and clinical hyperthyroidism were less than 5%. Analysis showed the presence of AntiTG in 12 HCV patients (30%), AntiTPO in 15 (37.5%) and both AntiTG and antiTPO in 10 patients (25%). Only 3 patients were found with the history of anti-thyroid auto-antibodies (7.5%) and one with parents and relatives with auto-immune disorders (2.5%). Patients that remained untreated were 12 (30%), under treatment 18 (45%) and with complete-course of treatment 10 (25%). As per review of the literature, meta-analysis of evident data and cross-sectional studies of selective cohorts (as studied in presented research), thyroid connection is designated as one of the most recurrent endocrine ailment associated with chronic HCV infection. Moreover, it also represents an extrahepatic disease in the continuum of HCV syndrome. In conclusion, HCV patients were more likely to encompass thyroid disorders especially related to development of either of ATAb or both antiTG and AntiTPO.

Keywords: Hepatitis C viral (HCV) infection, anti-thyroid antibodies, anti-thyroid peroxidase antibodies, anti-thyroglobulin antibodies

Procedia PDF Downloads 157
398 Evaluation of Antibody Titer Produced in Layer Chicken after Vaccination with an Experimental Ornitobacterium rhinotracheal Vaccine

Authors: Mohammad Javad Mehrabanpour, Mohammad Hosein Hosseini, Ali Shirazi, Dorsa Mehrabanpour

Abstract:

Respiratory infections are the most important diseases that affect poultry. Ornithobacterium rhinotracheale is a bacterium that causes respiratory infections including alveolar inflation and pneumonia in birds. The aim of this study was to evaluated antibody titer against Ornitobacterium rhinotracheal in layer chicken sera after vaccination with an experimental ORT vaccine that produced in Razi Vaccine and Serum Research Institute. Cultured bacteria were inactivated by formalin, and controlled tests were conducted on it. The obtained antigens were formulated using Montanide oil and were homogenized using homogenizer. Eighty SPF chickens were kept until the age of 14 days under existing standards for temperature, humidity, and light. At the age of 14 days, chickens were divided into 3 groups. The first group included 50 chickens injected with prepared ORT vaccine, the second group, as control group, included 15 chickens injected with sterile PBS to get stress of infection and the third group included 15 chickens with no injection performed to them. All 3 groups were kept in separate cages at same room. Blood samples were regularly taken from the chickens every week for serum separation and evaluation of antibody titer. During the fifth week post vaccination, booster vaccine was injected into the chickens of vaccinated group. The chickens were inspected every day in terms of mortality as well as any injection site reactions. Three weeks after the booster injection, blood samples were taken from all chickens of all groups, and sera were isolated. The sera of immunized (vaccinated) SPF chickens with ORT vaccine as well as that of SPF chickens in the control groups were reviewed according to the recommendations of ELISA kit manufacturer to examine the chicken’s humeral immune response to the studied vaccine. Potency, stability and sterility tests were also performed on the above mentioned vaccine. Results obtained indicate high antibody titer in sera of chickens vaccinated with experimental ORT vaccine as compared with the control groups that emphasize the ability of experimentally prepared ORT vaccine to stimulate humoral immune response of chicken. After the second injection, antibody titer increased and remained almost stable up to 9 weeks after the injection. ORT vaccine can cause potency in chickens and can protect them against disease.

Keywords: antibody, layer chicken, Ornithobactrium rhinotracitis, vaccine

Procedia PDF Downloads 416
397 Chip Less Microfluidic Device for High Throughput Liver Spheroid Generation

Authors: Sourita Ghosh, Falguni Pati, Suhanya Duraiswamy

Abstract:

Spheroid, a simple three-dimensional cellular aggregate, allows us to simulate the in-vivo complexity of cellular signaling and interactions in greater detail than traditional 2D cell culture. It can be used as an in-vitro model for drug toxicity testing, tumor modeling and many other such applications specifically for cancer. Our work is focused on the development of an affordable, user-friendly, robust, reproducible, high throughput microfluidic device for water in oil droplet production, which can, in turn, be used for spheroids manufacturing. Here, we have investigated the droplet breakup between two non-Newtonian fluids, viz. silicone oil and decellularized liver matrix, which acts as our extra cellular matrix (ECM) for spheroids formation. We performed some biochemical assays to characterize the liver ECM, as well as rheological studies on our two fluids and observed a critical dependence of capillary number (Ca) on droplet breakup and homogeneous drop formation

Keywords: chip less, droplets, extracellular matrix, liver spheroid

Procedia PDF Downloads 89
396 Neurological Complications Related to Anesthesia in Pediatric Patients Receiving Radiation Therapy under Anesthesia

Authors: Behzad Sinaei, Shahryar Sane, Behzad Kazemi Haki

Abstract:

Children with different malignancies usually experience potential neurologic complications when treated with radiation therapy, especially if under frequent anesthesia. The aim of this study was to evaluate the neurologic problems associated with anesthesia in pediatrics treated with radiotherapy under anesthesia. The study was a cross-sectional experiment that consisted of 133 pediatric patients with different malignancies who needed anesthesia for performing radiotherapy and were referred to Omid Charity Hospital and Imam Khomeini University Hospital from 2014 to 2020 by the census. P-values less than 0.05 were considered statistically significant (P-value < 0.05). Anesthesia complications in this study were slight and insignificant. Some were due to the effects of the tumor on other important organs or either previous radiation therapy or chemotherapy. For safe anesthesia, considering the effects of tumors on body organs and the neurological complications they cause can greatly help reduce anesthesia complications in pediatrics under radiation therapy.

Keywords: anesthesia, neurologic complications, pediatrics, radiotherapy

Procedia PDF Downloads 103
395 Oncogenic Functions of Long Non-Coding RNA XIST in Human Nasopharyngeal Carcinoma by Targeting MiR-34a-5p

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in several human malignant tumors, and its dysregulation was closed associated with tumor initiation, development and progression. Nevertheless, whether the aberrant expression of XIST in human nasopharyngeal carcinoma (NPC) is corrected with malignancy, metastasis or prognosis has not been elaborated. Here, we discovered that XIST was up-regulated in NPC tissues and higher expression of XIST contributed to a markedly poorer survival time. In addition, multivariate analysis demonstrated XIST was an independent risk factor for prognosis. XIST over-expression enhanced, while XIST silencing hampered the cell growth in NPC. Additionally, mechanistic analysis revealed that XIST up-regulated the expression of miR-34a-5p targeted gene E2F3 through acting as a competitive ‘sponge’ of miR-34a-5p. Taking all into account, we concluded that XIST functioned as an oncogene in NPC through up-regulating E2F3 in part through ‘spongeing’ miR-34a-5p.

Keywords: X inactivate-specific transcript; hsa-miRNA-34a-5p, miR-34a-5p; E2F3, nasopharyngeal carcinoma, tumorigenesis

Procedia PDF Downloads 240
394 Case Report of Left Atrial Myxoma Diagnosed by Bedside Echocardiography

Authors: Anthony S. Machi, Joseph Minardi

Abstract:

We present a case report of left atrial myxoma diagnosed by bedside transesophageal (TEE) ultrasound. Left atrial myxoma is the most common benign cardiac tumor and can obstruct blood flow and cause valvular insufficiency. Common symptoms consist of dyspnea, pulmonary edema and other features of left heart failure in addition to thrombus release in the form of tumor fragments. The availability of bedside ultrasound equipment is essential for the quick diagnosis and treatment of various emergency conditions including cardiac neoplasms. A 48-year-old Caucasian female with a four-year history of an untreated renal mass and anemia presented to the ED with two months of sharp, intermittent, bilateral flank pain radiating into the abdomen. She also reported intermittent vomiting and constipation along with generalized body aches, night sweats, and 100-pound weight loss over last year. She had a CT in 2013 showing a 3 cm left renal mass and a second CT in April 2016 showing a 3.8 cm left renal mass along with a past medical history of diverticulosis, chronic bronchitis, dyspnea on exertion, uncontrolled hypertension, and hyperlipidemia. Her maternal family history is positive for breast cancer, hypertension, and Type II Diabetes. Her paternal family history is positive for stroke. She was a current everyday smoker with an 11 pack/year history. Alcohol and drug use were denied. Physical exam was notable for a Grade II/IV systolic murmur at the right upper sternal border, dyspnea on exertion without angina, and a tender left lower quadrant. Her vitals and labs were notable for a blood pressure of 144/96, heart rate of 96 beats per minute, pulse oximetry of 96%, hemoglobin of 7.6 g/dL, hypokalemia, hypochloremia, and multiple other abnormalities. Physicians ordered a CT to evaluate her flank pain which revealed a 7.2 x 8.9 x 10.5 cm mixed cystic/solid mass in the lower pole of the left kidney and a filling defect in the left atrium. Bedside TEE was ordered to follow up on the filling defect. TEE reported an ejection fraction of 60-65% and visualized a mobile 6 x 3 cm mass in the left atrium attached to the interatrial septum extending into the mitral valve. Cardiothoracic Surgery and Urology were consulted and confirmed a diagnosis of left atrial myxoma and clear cell renal cell carcinoma. The patient returned a week later due to worsening nausea and vomiting and underwent emergent nephrectomy, lymph node dissection, and colostomy due to a necrotic colon. Her condition declined over the next four months due to lung and brain metastases, infections, and other complications until she passed away.

Keywords: bedside ultrasound, echocardiography, emergency medicine, left atrial myxoma

Procedia PDF Downloads 330
393 Targeted Photoactivatable Multiagent Nanoconjugates for Imaging and Photodynamic Therapy

Authors: Shazia Bano

Abstract:

Nanoconjugates that integrate photo-based therapeutics and diagnostics within a single platform promise great advances in revolutionizing cancer treatments. However, to achieve high therapeutic efficacy, designing functionally efficacious nanocarriers to tightly retain the drug, promoting selective drug localization and release, and the validation of the efficacy of these nanoconjugates is a great challenge. Here we have designed smart multiagent, liposome based targeted photoactivatable multiagent nanoconjugates, doped with a photoactivatable chromophore benzoporphyrin derivative (BPD) labelled with an active targeting ligand cetuximab to target the EGFR receptor (over expressed in various cancer cells) to deliver a combination of therapeutic agents. This study establishes a tunable nanoplatform for the delivery of the photoactivatable multiagent nanoconjugates for tumor-specific accumulation and targeted destruction of cancer cells in complex cancer model to enhance the therapeutic index of the administrated drugs.

Keywords: targeting, photodynamic therapy, photoactivatable, nanoconjugates

Procedia PDF Downloads 142
392 Design and Facile Synthesis of New Amino Acid Derivatives with Anti-Tumor and Antimicrobial Activities

Authors: Hoda Sabry Othman, Randa Helmy Swellem, Galal Abd El-Moein Nawwar

Abstract:

N-cyanoacetyl glycine is a reactive polyfunctional precursor for synthesis of new difficult accessible compounds including pyridones, thiazolopyridine and others. The key step of this protocol is the formation of different ylidines which underwent Michael addition with carbon nucleophiles affording various heterocyclic compounds. Selected compounds underwent pharmacological evaluation, in vitro against two cell lines; breast cell line (MCF-7),and liver cell line(HEPG2). Compounds 14, 15a and 16 showed IC50 values 8.93, 8.18 and 8.03 (µ/ml) respectively for breast cell line (MCF-7), while the standard drug (Tamoxifen) revealed IC50 8.31. With respect to the liver cell line (HEPG2), compounds 14 and 15a revealed IC50 18.4 and 13.6(µ/ml) respectively while the IC50 of the standard drug(5-Flurouracil) is 25(µ/ml). The antimicrobial activity was also screened and revealed that oxime 7 and ylidine 9f showed a broad-spectrum activity.

Keywords: antitumor, cyanoacetyl glycine, heterocycles, pyridones

Procedia PDF Downloads 337
391 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127
390 Pilomatrixoma of the Left Infra-Orbital Region in a 9 Year Old

Authors: Zainab Shaikh, Yusuf Miyanji

Abstract:

Pilomatrixoma is a benign neoplasm of the hair follicle matrix that is not commonly diagnosed in general practice. This is a case report of a 9-year-old boy who presented with a one-year history of a 19mm x 11 mm swelling in the left infra-orbital region. This was previously undiagnosed in Spain, where the patient resided at the time of initial presentation, due to the language barrier the patient’s family encountered. An ultrasound and magnetic resonance imaging gave useful information regarding surrounding structures for complete tumor excision and indicated that the risk of facial nerve palsy is low. The lesion was surgically excised and a definitive diagnosis was made after histopathology. Pilomatrixoma, although not rare in its occurrence, is rarely this large at the time of excision due to early presentation. This case highlights the importance of including pilomatrixoma in the differential diagnosis of dermal and subcutaneous lesions in the head and neck region, as it is often misdiagnosed due to the lack of awareness of its clinical presentation.

Keywords: pilomatrixoma, swelling, infra-orbital, facial swelling

Procedia PDF Downloads 145
389 Normal Hematopoietic Stem Cell and the Toxic Effect of Parthenolide

Authors: Alsulami H., Alghamdi N., Alasker A., Almohen N., Shome D.

Abstract:

Most conventional chemotherapeutic agents which are used for the treatment of cancers not only eradicate cancer cells but also affect normal hematopoietic Stem cells (HSCs) that leads to severe pancytopenia during treatment. Therefore, a need exists for novel approaches to treat cancer without or with minimum effect on normal HSCs. Parthenolide (PTL), a herbal product occurring naturally in the plant Feverfew, is a potential new chemotherapeutic agent for the treatment of many cancers such as acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). In this study we investigated the effect of different PTL concentrations on the viability of normal HSCs and also on the ability of these cells to form colonies after they have been treated with PTL in vitro. Methods: In this study, 24 samples of bone marrow and cord blood were collected with consent, and mononuclear cells were separated using density gradient separation. These cells were then exposed to various concentrations of PTL for 24 hours. Cell viability after culture was determined using 7ADD in a flow cytometry test. Additionally, the impact of PTL on hematopoietic stem cells (HSCs) was evaluated using a colony forming unit assay (CFU). Furthermore, the levels of NFҝB expression were assessed by using a PE-labelled anti-pNFκBP65 antibody. Results: this study showed that there was no statistically significant difference in the percentage of cell death between untreated and PTL treated cells with 5 μM PTL (p = 0.7), 10 μM PTL (p = 0.4) and 25 μM (p = 0.09) respectively. However, at higher doses, PTL caused significant increase in the percentage of cell death. These results were significant when compared to untreated control (p < 0.001). The response of cord blood cells (n=4) on the other hand was slightly different from that for bone marrow cells in that the percentage of cell death was significant at 100 μM PTL. Therefore, cord blood cells seemed more resistant than bone marrow cells. Discussion &Conclusion: At concentrations ≤25 μM PTL has a minimum or no effect on HSCs in vitro. Cord blood HSCs are more resistant to PTL compared to bone marrow HSCs. This could be due to the higher percentage of T-lymphocytes, which are resistant to PTL, in CB samples (85% in CB vs. 56% in BM. Additionally, CB samples contained a higher proportion of CD34+ cells, with 14.5% of brightly CD34+ cells compared to only 1% in normal BM. These bright CD34+ cells in CB were mostly negative for early-stage stem cell maturation antigens, making them young and resilient to oxidative stress and high concentrations of PTL.

Keywords: stem cell, parthenolide, NFKB, CLL

Procedia PDF Downloads 49
388 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs

Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee

Abstract:

Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.

Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins

Procedia PDF Downloads 147
387 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 232
386 How OXA GENE Expression is Implicated in the Treatment Resistance and Poor Prognosis in Glioblastoma

Authors: Naomi Seidu, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan

Abstract:

The current poor prognosis of glioblastoma has called for the need for an improvement in treatment methods in order to improve its survival rate. Despite the different interventions currently available for this tumor, the average survival is still only a few months. (12-15). The aim is to create a more favorable prognosis and have a reduction in the resistance to treatment currently being experienced, even with surgical interventions and chemotherapy. From the available literature, there is a relationship between the presence of HOX genes (Homeobox genes) and glioblastoma, which could be attributable to the increasing treatment resistance. Hence silencing these genes can be a key to improving survival rates of glioblastoma. A series of studies have highlighted the role that HOX genes play in glioblastoma prognosis. Promotion of human glioblastoma initiation, aggressiveness, and resistance to Temozolomide has been associated with HOXA9. The role of HOX gene expression in cancer stem cells should be studied as it could provide a means of designing CSC-targeted therapies, as CSCs play a part in the initiation and progression of solid tumors.

Keywords: GBM- glioblastoma, HOXA gene- homeobox genes cluster, signaling pathways, temozolomide

Procedia PDF Downloads 105
385 Anticancer Effects of MicroRNA-1275 in Human Nasopharyngeal Carcinoma by Targeting HOXB5

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Through analysis of a published micro-array-based high-throughput assessment, we discovered that miR-1275 was markedly down-regulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its effect and mechanism involved in NPC development and progression. In this study, we investigated the role of miR-1275 on the development of NPC. The results indicated that miR-1275 was significantly down-regulated in primary NPC tissues, and very low levels were found in NPC cell lines. Ectopic expression of miR-1275 in NPC cell lines significantly suppressed cell growth as evidenced by cell viability assay and colony formation assay, through inhibition of HOXB5. In addition, miR-1275 suppresses G1/S transition through inhibition of HOXB5. Further, oncogene HOXB5 was revealed to be a putative target of miR-1275, which was inversely correlated with miR-1275 expression in NPC. Collectively, our study demonstrates that as a tumor suppressor, miR-1275 played a pivotal role on NPC through inhibiting cell proliferation, and suppressing G1/S transition by targeting oncogenic HOXB5.

Keywords: microRNA-1275 (miR-1275), HOXB5, nasopharyngeal carcinoma, proliferation

Procedia PDF Downloads 264
384 Synthesis and Structural Characterization of 6-Nitroindazole Derivatives

Authors: Mohamed El Moctar Abeidi

Abstract:

The indazole derivatives exhibit a wide spectrum of biological activities. They are known for their anti-tumor, antiplatelet, anti-viral, anti-microbial, anti-inflammatory, anti-leishmania and even anti-spermatogen. As part of our research on the synthesis of a number of heterocycles capable of exhibiting a biological and pharmacological property, due to our ongoing interest in the development of a simple and low-cost procedure for obtaining heterocyclic compounds that may have an interest for medicinal purposes. We present in this work the synthesis of 6-nitro-indazoles derivatives, using two different methods. the first method is the alkylation of Nitroindazole by two different alkylating agents under the conditions of solid/liquid phase transfer catalysis in N, N-dimethylformamide (DMF) in the presence of potassium carbonate (K₂CO₃) as a base, and tetra-n-butylammonium bromide (BTBA) as a catalyst. While the other method is the 1,3-dipolar cycloaddition, in this case, we have undertaken the preparation of bi-heterocyclic containing the 6-nitroindazole associate with group of isoxazoline, isoxazole or 1,2,3-Triazole under normal conditions and, under the catalytic conditions of the click chemistry we were also able to determine the structures without any ambiguity by the ¹H and ¹³C NMR.

Keywords: indazole, 6-nitroindazole, isoxazole, 1, 2, 3-Triazole

Procedia PDF Downloads 149
383 Development and Characterization of Mesoporous Silica Nanoparticles of Quercetin in Skin Cancer

Authors: Khusboo Agrawal, S. Saraf

Abstract:

Quercetin, a flavonol provides a cellular protection against UV induced oxidative damages due to its excellent free radical scavenging activity and direct pro-apoptopic effect on tumor cells. However, its topical use is limited due to its unfavorable physicochemical properties. The present study was aimed to evaluate the potential of mesoporous silica nanoparticles as topical carrier system for quercetin delivery. Complexes of quercetin with mesoporous silica was prepared with different weight ratios and characterized by thermo gravimetric analysis, X-ray diffraction, high resolution TEM, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry The protective effect of this vehicle on UV-induced degradation of the quercetin was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated by using Franz diffusion cells. The immobilization of Quercetin in mesoporous silica nanoparticles (MSNs) increased the stability without undermining the antioxidant efficacy.

Keywords: cancer, MSNs, quercetin, topical delivery

Procedia PDF Downloads 308
382 Immunocytochemical Stability of Antigens in Cytological Samples Stored in In-house Liquid-Based Medium

Authors: Anamarija Kuhar, Veronika Kloboves Prevodnik, Nataša Nolde, Ulrika Klopčič

Abstract:

The decision for immunocytochemistry (ICC) is usually made in the basis of the findings in Giemsa- and/or Papanicolaou- smears. More demanding diagnostic cases require preparation of additional cytological preparations. Therefore, it is convenient to suspend cytological samples in a liquid based medium (LBM) that preserve antigen and morphological properties. However, the duration of these properties being preserved in the medium is usually unknown. Eventually, cell morphology becomes impaired and altered, as well as antigen properties may be lost or become diffused. In this study, the influence of cytological sample storage length in in-house liquid based medium on antigen properties and cell morphology is evaluated. The question is how long the cytological samples in this medium can be stored so that the results of immunocytochemical reactions are still reliable and can be safely used in routine cytopathological diagnostics. The stability of 6 ICC markers that are most frequently used in everyday routine work were tested; Cytokeratin AE1/AE3, Calretinin, Epithelial specific antigen Ep-CAM (MOC-31), CD 45, Oestrogen receptor (ER), and Melanoma triple cocktail were tested on methanol fixed cytospins prepared from fresh fine needle aspiration biopsies, effusion samples, and disintegrated lymph nodes suspended in in-house cell medium. Cytospins were prepared on the day of the sampling as well as on the second, fourth, fifth, and eight day after sample collection. Next, they were fixed in methanol and immunocytochemically stained. Finally, the percentage of positive stained cells, reaction intensity, counterstaining, and cell morphology were assessed using two assessment methods: the internal assessment and the UK NEQAS ICC scheme assessment. Results show that the antigen properties for Cytokeratin AE1/AE3, MOC-31, CD 45, ER, and Melanoma triple cocktail were preserved even after 8 days of storage in in-house LBM, while the antigen properties for Calretinin remained unchanged only for 4 days. The key parameters for assessing detection of antigen are the proportion of cells with a positive reaction and intensity of staining. Well preserved cell morphology is highly important for reliable interpretation of ICC reaction. Therefore, it would be valuable to perform a similar analysis for other ICC markers to determine the duration in which the antigen and morphological properties are preserved in LBM.

Keywords: cytology samples, cytospins, immunocytochemistry, liquid-based cytology

Procedia PDF Downloads 142
381 Association of Overweight and Obesity with Breast Cancer

Authors: Amir Ghasemlouei, Alireza Khalaj

Abstract:

In women, cancer of the breast is one of the most common incident cancer and cause of death from cancer .we reviewed the prevalence of obesity and its association with breast cancer. In this study, a total of 25 articles regarding the subject matter of the article have been presented in which 640 patients were examined that 320 patients with breast cancer and 320 were controls. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman is endogenous estrogen of the tumor and regulate the activities of growth steroids, obesity is a risk factor for breast cancer is confirmed. Our study and other studies show that obesity is a risk factor for breast cancer. And with a weight loss intervention for breast cancer can be prevented in the future.

Keywords: breast cancer, review study, obesity, overweight

Procedia PDF Downloads 453
380 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line

Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan

Abstract:

Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.

Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA

Procedia PDF Downloads 135
379 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 94
378 Morphological and Molecular Evaluation of Dengue Virus Serotype 3 Infection in BALB/c Mice Lungs

Authors: Gabriela C. Caldas, Fernanda C. Jacome, Arthur da C. Rasinhas, Ortrud M. Barth, Flavia B. dos Santos, Priscila C. G. Nunes, Yuli R. M. de Souza, Pedro Paulo de A. Manso, Marcelo P. Machado, Debora F. Barreto-Vieira

Abstract:

The establishment of animal models for studies of DENV infections has been challenging, since circulating epidemic viruses do not naturally infect nonhuman species. Such studies are of great relevance to the various areas of dengue research, including immunopathogenesis, drug development and vaccines. In this scenario, the main objective of this study is to verify possible morphological changes, as well as the presence of antigens and viral RNA in lung samples from BALB/c mice experimentally infected with an epidemic and non-neuroadapted DENV-3 strain. Male BALB/c mice, 2 months old, were inoculated with DENV-3 by intravenous route. After 72 hours of infection, the animals were euthanized and the lungs were collected. Part of the samples was processed by standard technique for analysis by light and transmission electronic microscopies and another part was processed for real-time PCR analysis. Morphological analyzes of lungs from uninfected mice showed preserved tissue areas. In mice infected with DENV-3, the analyzes revealed interalveolar septum thickening with presence of inflammatory infiltrate, foci of alveolar atelectasis and hyperventilation, bleeding foci in the interalveolar septum and bronchioles, peripheral capillary congestion, accumulation of fluid in the blood capillary, signs of interstitial cell necrosis presence of platelets and mononuclear inflammatory cells circulating in the capillaries and/or adhered to the endothelium. In addition, activation of endothelial cells, platelets, mononuclear inflammatory cell and neutrophil-type polymorphonuclear inflammatory cell evidenced by the emission of cytoplasmic membrane prolongation was observed. DEN-like particles were seen in the cytoplasm of endothelial cells. The viral genome was recovered from 3 in 12 lung samples. These results demonstrate that the BALB / c mouse represents a suitable model for the study of the histopathological changes induced by DENV infection in the lung, with tissue alterations similar to those observed in human cases of DEN.

Keywords: BALB/c mice, dengue, histopathology, lung, ultrastructure

Procedia PDF Downloads 253
377 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 137
376 The Role Of Diallyl Trisulfide As A Suppressor In Activated-Platelets Induced Human Breast Cancer MDA-MB-435s Cells Hematogenous Metastasis

Authors: Yuping Liu, Li Tao, Yin Lu

Abstract:

Accumulating evidence has been shown that diallyl trisulfide (DATS) from garlic may reduce the risk of developing several types of cancer. In view of the dynamic crosstalk interplayed by tumor cells and platelets in hematogenous metastasis, we demonstrate the effectiveness of DATS on the metastatic behaviors of MDA-MB-435s human breast cancer cell line co-incubated with activated platelets. Indeed, our data identified that DATS significantly blocked platelets fouction induced by PAF, followed by the decreased production of TXB2. DATS was found to dose-dependently suppressed MDA-MB-435s cell migration and invasion in presence of activated platelets by PAF in vitro. Furthermore, the expression, secretion and enzymatic activity of matrix metalloproteinase (MMP)-2/9, as well as the luciferase activity of upstream regulator NF-κB in MDA-MB-435s, were obviously diminished by DATS. In parallel, DATS blocked upstream NF-κB activation signaling complexes composed of extracellular signal-related kinase (ERK) as assessed by measuring the levels of the phosphorylated forms.

Keywords: DATS, ERK, metastasis, MMPs, NF-κB, platelet

Procedia PDF Downloads 386
375 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles

Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova

Abstract:

Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.

Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles

Procedia PDF Downloads 118