Search results for: tissue damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3838

Search results for: tissue damage

3358 Protective Effect of Thymoquinone against Arsenic-Induced Testicular Toxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of thymoquinone (TQ) was investigated in rats exposed to testicular injury induced by sodium arsenite (10mg/kg/day, orally, for two days). TQ treatment (10mg/kg/day, intraperitoneal injection) was applied for five days, starting three day before arsenic administration. TQ significantly attenuated the arsenic-induced decreases of serum testosterone, and testicular reduced glutathione level, and significantly decreased the elevations of testicular malondialdehyde and nitric oxide levels resulted from arsenic administration. Also, TQ ameliorated the arsenic-induced testicular tissue injury observed by histopathological examination. In addition, TQ decreased the arsenic-induced expression of inducible nitric oxide synthase and caspase-3 in testicular tissue. It was concluded that TQ may represent a potential candidate to protect against arsenic-induced testicular injury.

Keywords: thymoquinone, arsenic, testes, rats

Procedia PDF Downloads 298
3357 Determination of the Effectiveness of Some Methods Used in Greater Wax Moth (Galleria mellonella L.) in Honeycombs

Authors: Neslihan Ozsoy Taskiran, Miray Dayioglu, Belgin Gunbey, Banu Yucel, Cigdem Takma, Unal Karik, Tugce Olgun, Levent Aydin

Abstract:

A greater wax moth (Galleria mellonella L.), which is one of the most important pests after Varroa, plays a role in the transportation of many pathogens into the hive as well as damage to the honeycombs, and beekeepers suffer economically. Due to the risk that some of the methods against this pest may cause residue in bee products, and it can be harmful to the health of people who consume these products. Therefore, the most appropriate, most economical, and effective method should be applied in the moth control. For this purpose, in the first phase of the project (2017-2018), planned to be 2-stage in the Aegean Agricultural Research Institute in 2017-2020, the honeycombs, certified with good agricultural practice, were kept in a favorable condition for moths. Later, applications (Sulfur - B401 - Walnut (Leaf & Smoker) - lavender essential oil (1cc & 2cc & 3cc & 4cc) - laurel essential oil (1cc & 2cc & 3cc & 4cc) - control) were applied to the honeycombs with moths. In 2017, the B401 group had the highest wax moth damage area, and the group with the lowest wax moth damage area was determined as lavender 1cc; In 2018, the highest wax moth damage area was found in the walnut smoker group, while the lowest wax moth damage area was found in sulfur, walnut leaves, laurel 1cc - 2cc - 4cc, lavender 1cc - 2cc - 3cc - 4cc and control groups. In addition, sulfur residue amount (mean 128,18 mg/kg) in honeycomb was measured in the sulfur-treated group. Phase 1 of the project was completed, and the most important sub-groups among walnut (leaf) - lavender (1cc) and laurel (4cc) groups were identified. Accordingly, it is planned to carry out these treatments ((sulfur - B401 - walnut (leaf) - lavender (1cc) and laurel (4cc)) on honeycombs with do not contain moths, and later, it is planned to examine the effects of the treatment on the offspring area and honey yield by giving these honeycombs to the hives, in the 2nd stage of the project (2019-2020).

Keywords: honey bee, lavender essential oil, laurel essential oil, walnut, wax moth

Procedia PDF Downloads 166
3356 Diagnostic Accuracy Of Core Biopsy In Patients Presenting With Axillary Lymphadenopathy And Suspected Non-Breast Malignancy

Authors: Monisha Edirisooriya, Wilma Jack, Dominique Twelves, Jennifer Royds, Fiona Scott, Nicola Mason, Arran Turnbull, J. Michael Dixon

Abstract:

Introduction: Excision biopsy has been the investigation of choice for patients presenting with pathological axillary lymphadenopathy without a breast abnormality. Core biopsy of nodes can provide sufficient tissue for diagnosis and has advantages in terms of morbidity and speed of diagnosis. This study evaluates the diagnostic accuracy of core biopsy in patients presenting with axillary lymphadenopathy. Methods: Between 2009 and 2019, 165 patients referred to the Edinburgh Breast Unit had a total of 179 axillary lymph node core biopsies. Results: 152 (92%) of the 165 initial core biopsies were deemed to contain adequate nodal tissue. Core biopsy correctly established malignancy in 75 of the 78 patients with haematological malignancy (96%) and in all 28 patients with metastatic carcinoma (100%) and correctly diagnosed benign changes in 49 of 57 (86%) patients with benign conditions. There were no false positives and no false negatives. In 67 (85.9%) of the 78 patients with hematological malignancy, there was sufficient material in the first core biopsy to allow the pathologist to make an actionable diagnosis and not ask for more tissue sampling prior to treatment. There were no complications of core biopsy. On follow up, none of the patients with benign cores has been shown to have malignancy in the axilla and none with lymphoma had their initial disease incorrectly classified. Conclusions: This study shows that core biopsy is now the investigation of choice for patients presenting with axillary lymphadenopathy even in those suspected as having lymphoma.

Keywords: core biopsy, excision biopsy, axillary lymphadenopathy, non-breast malignancy

Procedia PDF Downloads 240
3355 Minerals of Canola (Brassica napus) as Affected by Water Stress and Applied Calcium

Authors: Rizwan Alam, Ikhtiar Khan, Aqib Iqbal

Abstract:

Plants are naturally exposed to a wide variety of environmental stresses. The stresses may be biotic or/and abiotic. These environmental stresses have adverse effects on photosynthesis, water relation and nutrients uptake of plants. Fertilization of plants with exogenous minerals can enhance the drought tolerance in plants. In this experiment, canola (Brassica napus) was treated with solutions of calcium nitrate in different concentrations before the imposition of drought stress for 10 days. It was observed that drought stress decreased the tissue-K, Ca and K/Ca ratio of canola seedlings. The tissue-carbon and nitrogen contents were also depressed by the drought stress. Application of calcium nitrate, however, could alleviate the adverse effects of drought stress by showing a positive effect on all the aforementioned parameters.

Keywords: Brassica napus, calcium, carbon, potassium

Procedia PDF Downloads 526
3354 Protective Effect of Hesperidin against Cyclophosphamide Hepatotoxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of hesperidin was investigated in rats exposed to liver injury induced by a single intraperitoneal injection of cyclophosphamide (CYP) at a dose of 150 mg kg-1. Hesperidin treatment (100 mg kg-1/day, orally) was applied for seven days, starting five days before CYP administration. Hesperidin significantly decreased the CYP-induced elevations of serum alanine aminotransferase, and hepatic malondialdehyde and myeloperoxidase activity, significantly prevented the depletion of hepatic glutathione peroxidase activity resulted from CYP administration. Also, hesperidin ameliorated the CYP-induced liver tissue injury observed by histopathological examination. In addition, hesperidin decreased the CYP-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, Fas ligand, and caspase-9 in liver tissue. It was concluded that hesperidin may represent a potential candidate to protect against CYP-induced hepatotoxicity.

Keywords: hesperidin, cyclophosphamide, liver, rats

Procedia PDF Downloads 319
3353 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications

Authors: Mustafa Abu Ghalia, Mohammed Seddik

Abstract:

The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.

Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers

Procedia PDF Downloads 61
3352 Design and Development of an Application for the Evaluation of Personal Injury and Disability in Occupational and Forensic Medicine

Authors: Daniel Suárez, Jesús Tomas, Sandra Sendra, Sandra Viciano-Tudela, Luis Felipe Calle, Javier Urios, Jaime Lloret

Abstract:

Our study is to develop a tool for the mobile phone to an assessment of body damage or determination of the degree of disability. This is a field of action of legal medicine and insurance with obvious economic implications. Those people who have suffered an accident or bodily harm demand a quantification of it. The assessment of bodily harm or disability by the expert medical professional is not exempt from complexity. Sometimes it is difficult to quantify pain; other times, the doctor faces simulators or exaggerators, and on many occasions, it is difficult to remember the extensive tables of scales whose details are complex to remember and apply. We present a tool, as a mobile application, that allows entering the sociodemographic date of the patient as well as the characteristics of the accident suffered by the person. With these preliminary data and introducing bodily damage, an approximate calculation of the compensation that the injured party should receive can be made. One of the results of this study is that it allows calculating joint mobility angles without the need to use a goniometer.

Keywords: mobile tool, body damage, personal injury and disability, telemedicine

Procedia PDF Downloads 89
3351 In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes

Authors: H. Bouaziz, M. Sefi, J. de Lapuente, M. Borras, N. Zeghal

Abstract:

Although arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing a IC50 value of 34.18 ± 0.6 µM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic.

Keywords: arsenic trioxide, cytotoxixity, genotoxicity, HaCaT

Procedia PDF Downloads 257
3350 Development of an Auxetic Tissue Implant

Authors: Sukhwinder K. Bhullar, M. B. G. Jun

Abstract:

The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.

Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues

Procedia PDF Downloads 459
3349 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping

Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin

Abstract:

One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.

Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time

Procedia PDF Downloads 386
3348 The Development of the Prototype of Bamboo Shading Device

Authors: Nuanwan Tuaycharoen, Wanarat Konisranukul

Abstract:

The main aim of this research was to investigate the prototype of bamboo shading device. There were two objectives of this study. The first objective was to investigate the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle and fungi. The second aim of this study was to develop a prototype of bamboo shading device. The study of the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle in laboratory showed that, among seven treatments tested, wood vinegar treatment can protect powder-post beetle better than the original method up to 92.91%. It was also found that wood vinegar treatment can show the best performance in fungi protection and work better than the original method up to 40%. The second experiment was carried out by constructing four bamboo shading devices and installing them on a building for 28 days. All aspects of shading device were investigated in terms of their beauty, durability, and ease of construction and assembly. The final prototype was developed from the lessons drawn from these tested options. In conclusion this study showed the effectiveness of some natural preservatives against insect and fungi damage. It also illustrated the characteristics of the prototype of bamboo shading device that can constructed by rural workers within one week.

Keywords: bamboo, shading device, energy conservation, alternative material

Procedia PDF Downloads 378
3347 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 160
3346 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite

Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini

Abstract:

In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.

Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation

Procedia PDF Downloads 473
3345 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 111
3344 Preoperative 3D Planning and Reconstruction of Mandibular Defects for Patients with Oral Cavity Tumors

Authors: Janis Zarins, Kristaps Blums, Oskars Radzins, Renars Deksnis, Atis Svare, Santa Salaka

Abstract:

Wide tumor resection remains the first choice method for tumors of the oral cavity. Nevertheless, remained tissue defect impacts patients functional and aesthetical outcome, which could be improved using microvascular tissue transfers. Mandibular reconstruction is challenging due to the complexity of composite tissue defects and occlusal relationships for normal eating, chewing, and pain free jaw motions. Individual 3-D virtual planning would provide better symmetry and functional outcome. The main goal of preoperative planning is to develop a customized surgical approach with patient specific cutting guides of the mandible, osteotomy guides of the fibula, pre-bended osteosynthesis plates to perform more precise reconstruction, to decrease the surgery time and reach the best outcome. Our study is based on the analysis of 32 patients operated on between 2019 to 2021. All patients underwent mandible reconstruction with vascularized fibula flaps. Patients characteristics, surgery profile, survival, functional outcome, and quality of life was evaluated. Preoperative planning provided a significant decrease of surgery time and the best arrangement of bone closely similar as before the surgery. In cases of bone asymmetry, deformity and malposition, a new mandible was created using 3D planning to restore the appearance of lower jaw anatomy and functionality.

Keywords: mandibular, 3D planning, cutting guides, fibula flap, reconstruction

Procedia PDF Downloads 126
3343 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park

Abstract:

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system

Procedia PDF Downloads 218
3342 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 133
3341 Mercury Detection in Two Fishes from the Persian Gulf

Authors: Zahra Khoshnood, Mehdi Kazaie, Sajedeh Neisi

Abstract:

In 2013, 24 fish samples were taken from two fishery regions in the north of Persian Gulf near the Iranian coastal lines. The two flatfishes were Yellofin seabream (Acanthopagrus latus) and Longtail tuna (Thannus tonggol). We analyzed total Hg concentration of liver and muscle tissues by Mercury Analyzer (model LECO AMA 254). The average concentration of total Hg in edible Muscle tissue of deep-Flounder was measured in Bandar-Abbas and was found to be 18.92 and it was 10.19 µg.g-1 in Bandar-Lengeh. The corresponding values for Oriental sole were 8.47 and 0.08 µg.g-1. The average concentration of Hg in liver tissue of deep-Flounder, in Bandar-Abbas was 25.49 and that in Bandar-Lengeh was 12.52 µg.g-1.the values for Oriental sole were 11.88 and 3.2 µg.g-1 in Bandar-Abbas and Bandar-Lengeh, respectively.

Keywords: mercury, Acanthopagrus latus, Thannus tonggol, Persian Gulf

Procedia PDF Downloads 603
3340 Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts

Authors: Mohammed Fayez Al Rez

Abstract:

Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases.

Keywords: electrospinning, poly(ε-caprolactone) (PCL), tissue-engineered vascular graft, tubular bilayered scaffolds, vascular cells

Procedia PDF Downloads 294
3339 Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma

Authors: Simona Perga, Chiara Beltramo, Floriana Fruscione, Isabella Martini, Federica Cavallo, Federica Riccardo, Paolo Buracco, Selina Iussich, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari, Paola Modesto

Abstract:

Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma.

Keywords: animal model, canine melanoma, gene expression, spontaneous tumors, targeted RNAseq

Procedia PDF Downloads 199
3338 A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates

Authors: Ahsan R. Khokhar, Fizza Hassan

Abstract:

Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion.

Keywords: Alkali-Silica Reaction (ASR), concrete strength degradation, damage assessment, damage evaluation

Procedia PDF Downloads 129
3337 Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering

Authors: D. Adel, F. Giacomini, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, B. Peleskae, J. Günster, A. Houshmand, M. Stiller, A. Rack, K. Ghaffar, A. Gamal, M. El Mofty, C. Knabe

Abstract:

The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering.

Keywords: calcium alkali orthophosphate, extracellular matrix mineralization, osteoblast differentiation, rapid prototyping, scaffold

Procedia PDF Downloads 329
3336 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 321
3335 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334
3334 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: Redha Yeghnem, Laid Boulefrakh, Sid Ahmed Meftah, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed finite element method (FEM). The anisotropic damage model is adopted to describe the damage extent of the RC shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method

Procedia PDF Downloads 365
3333 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 76
3332 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 270
3331 Effects of Pterostilbene in Brown Adipose Tissue from Obese Rats

Authors: Leixuri Aguirre, Iñaki Milton-Laskibar, Elizabeth Hijona, Luis Bujanda, Agnes M. Rimando, Maria P. Portillo

Abstract:

Introduction: In recent years great attention has been paid by scientific community to phenolic compounds as active biomolecules naturally present in foodstuffs due to their beneficial effects on health. Pterostilbene is a resveratrol dimethylether derivative which shows higher biodisponibility. Objective. To analyze the effects of two doses of pterostilbene on several markers of thermogenic capacity in a model of genetic obesity, which shows reduced thermogenesis. Methods: The experiment was conducted with thirty Zucker (fa/fa) rats that were distributed in 3 experimental groups, the control group and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of Ucp1, Pgc-1α, Cpt1b, Pparα, Nfr1, Tfam and Cox-2 were assessed by RT-PCR, protein expression of UCP1 and GLUT4 by western blot and enzyme activity of carnitine palmitoyl transferase 1b and citrate synthase by spectrophotometry in interscapular brown adipose tissue (iBAT). Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: Pterostilbene did not change gene expression of Pgc-1α. However, significant increases were found in the expression of Ucp1, Pparα, Nfr-1 and Cox-2. Protein expression of UCP1 and GLUT4 was increased in animals treated with pterostilbene, as well as the activities of CPT-1b and CS. These effects were observed with both doses of pterostilbene, without differences between them. Conclusions: These results show that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the anti-obesity properties of these compound needs further research. Acknowledgments: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.

Keywords: brown adipose tissue, pterostilbene, thermogenesis, uncoupling protein 1

Procedia PDF Downloads 295
3330 Implementation of Knowledge and Attitude Management Based on Holistic Approach in Andragogy Learning, as an Effort to Solve the Environmental Problems of Post-Coal Mining Activity

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of the problem after the environmental damage due to coal mining activities defined as the province of East Kalimantan corridor masterplan economic activity accelerated the expansion of Indonesia's economic development (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest postes group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post-coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental Issue

Procedia PDF Downloads 207
3329 Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers

Authors: Akshay A. Pandya, B. R. Parekh

Abstract:

This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn.

Keywords: earth fault damage, power transformer, practical simulation, SFRA traces, transformer damages

Procedia PDF Downloads 284