Search results for: structural dynamic identification
9968 Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones
Authors: K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham
Abstract:
Total hip replacement had been one of the most successful operations in hip arthritis surgery. The purpose of this research had been to develop a dynamic hip contact of Thai femoral bone to analyze the stress distribution on the implant and the strain distribution on the bone model under daily activities and compared with the static load simulation. The results showed the different of maximum von Mises stress 0.14 percent under walking and 0.03 percent under climbing stair condition and the different of equivalent total strain 0.52 percent under walking and 0.05 percent under climbing stair condition. The muscular forces should be evaluated with dynamic condition to reduce the maximum von Mises stress and equivalent total strain.Keywords: dynamic loading, static load, hip prosthesis, Thai femur, femoral bone, finite element analysis
Procedia PDF Downloads 3499967 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes
Authors: Mohsen Tehranizadeh, Mahboobe Forghani
Abstract:
The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design
Procedia PDF Downloads 4309966 Smart Unmanned Parking System Based on Radio Frequency Identification Technology
Authors: Yu Qin
Abstract:
In order to tackle the ever-growing problem of the lack of parking space, this paper presents the design and implementation of a smart unmanned parking system that is based on RFID (radio frequency identification) technology and Wireless communication technology. This system uses RFID technology to achieve the identification function (transmitted by 2.4 G wireless module) and is equipped with an STM32L053 micro controller as the main control chip of the smart vehicle. This chip can accomplish automatic parking (in/out), charging and other functions. On this basis, it can also help users easily query the information that is stored in the database through the Internet. Experimental tests have shown that the system has the features of low power consumption and stable operation, among others. It can effectively improve the level of automation control of the parking lot management system and has enormous application prospects.Keywords: RFID, embedded system, unmanned, parking management
Procedia PDF Downloads 3339965 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results
Authors: Jiri Brozovsky
Abstract:
Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity
Procedia PDF Downloads 4169964 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations
Authors: Simon Samwel Msanjila
Abstract:
Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust
Procedia PDF Downloads 4319963 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory
Authors: Sean Michael Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.Keywords: dynamic gravity, gravity, dark matter, dark energy
Procedia PDF Downloads 779962 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes
Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady
Abstract:
The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men
Procedia PDF Downloads 2889961 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 1989960 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded
Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin
Abstract:
The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension
Procedia PDF Downloads 2629959 Analysis of Incidences of Collapsed Buildings in the City of Douala, Cameroon from 2011-2020
Authors: Theodore Gautier Le Jeune Bikoko, Jean Claude Tchamba, Sofiane Amziane
Abstract:
This study focuses on the problem of collapsed buildings within the city of Douala over the past ten years, and more precisely, within the period from 2011 to 2020. It was carried out in a bid to ascertain the real causes of this phenomenon, which has become recurrent in the leading economic city of Cameroon. To achieve this, it was first necessary to review some works dealing with construction materials and technology as well as some case histories of structural collapse within the city. Thereafter, a statistical study was carried out on the results obtained. It was found that the causes of building collapses in the city of Douala are: Neglect of administrative procedures, use of poor quality materials, poor composition and confectioning of concrete, lack of Geotechnical study, lack of structural analysis and design, corrosion of the reinforcement bars, poor maintenance in buildings, and other causes. Out of the 46 cases of structural failure of buildings within the city of Douala, 7 of these were identified to have had no geotechnical study carried out, giving a percentage of 15.22%. It was also observed that out of the 46 cases of structural failure, 6 were as a result of lack of proper structural analysis and design, giving a percentage of 13.04%. Subsequently, recommendations and suggestions are made in a bid to placing particular emphasis on the choice of materials, the manufacture and casting of concrete, as well as the placement of the required reinforcements. All this guarantees the stability of a building.Keywords: collapse buildings, Douala, structural collapse, Cameroon
Procedia PDF Downloads 1659958 The Cases Studies of Eyewitness Misidentifications during Criminal Investigation in Taiwan
Authors: Chih Hung Shih
Abstract:
Eyewitness identification is one of the efficient information to identify suspects during criminal investigation. However eyewitness identification is improved frequently, inaccurate and plays vital roles in wrongful convictions. Most eyewitness misidentifications are made during police criminal investigation stage and then accepted by juries. Four failure investigation case studies in Taiwan are conduct to demonstrate how misidentifications are caused during the police investigation context. The result shows that there are several common grounds among these cases: (1) investigators lacked for knowledge about eyewitness memory so that they couldn’t evaluate the validity of the eyewitnesses’ accounts and identifications, (2) eyewitnesses were always asked to filter out several suspects during the investigation, and received investigation information which contaminated the eyewitnesses’ memory, (3) one to one live individual identifications were made in most of cases, (4) eyewitness identifications were always used to support the hypotheses of investigators, and exaggerated theirs powers when conform with the investigation lines, (5) the eyewitnesses’ confidence didn’t t reflect the validity of their identifications , but always influence the investigators’ beliefs for the identifications, (6) the investigators overestimated the power of the eyewitness identifications and ignore the inconsistency with other evidence. Recommendations have been proposed for future academic research and police practice of eyewitness identification in Taiwan.Keywords: criminal investigation, eyewitness identification, investigative bias, investigative failures
Procedia PDF Downloads 2449957 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 2019956 Vulnerability of Steel Moment-Frame Buildings with Pinned and, Alternatively, with Semi-Rigid Connections
Authors: Daniel Llanes, Alfredo Reyes, Sonia E. Ruiz, Federico Valenzuela Beltran
Abstract:
Steel frames have been used in building construction for more than one hundred years. Beam-column may be connected to columns using either stiffened or unstiffened angles at the top and bottom beam flanges. Designers often assume that these assemblies acted as “pinned” connections for gravity loads and that the stiffened connections would act as “fixed” connections for lateral loads. Observation of damages sustained by buildings during the 1994 Northridge earthquake indicated that, contrary to the intended behavior, in many cases, brittle fractures initiated within the connections at very low levels of plastic demand, and in some cases, while the structures remained essentially elastic. Due to the damage presented in these buildings other type of alternative connections have been proposed. According to a research funded by the Federal Emergency Management Agency (FEMA), the screwed connections have better performance when they are subjected to cyclic loads, but at the same time, these connections have some degree of flexibility. Due to this situation, some researchers ventured into the study of semi-rigid connections. In the present study three steel buildings, constituted by regular frames are analyzed. Two types of connections are considered: pinned and semi-rigid connections. With the aim to estimate their structural capacity, a number of incremental dynamic analyzes are performed. 3D structural models are used for the analyses. The seismic ground motions were recorded on sites near Los Angeles, California, where the structures are supposed to be located. The vulnerability curves of the building are obtained in terms of maximum inter-story drifts. The vulnerability curves (which correspond to the models with two different types of connections) are compared, and its implications on its structural design and performance is discussed.Keywords: steel frame Buildings, vulnerability curves, semi-rigid connections, pinned connections
Procedia PDF Downloads 2259955 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1609954 Performance Improvement of SBR Polymer Concrete Used in Construction of Rigid Pavement Highway
Authors: Mohammed Abbas Al-Jumaili
Abstract:
There are some studies which have been conducted in resent years to investigate the possibility of producing high performance polymer concrete. However, despite the great important of this subject, very limited amount of literature is available about the strength and performance of this type of concrete in case using in rigid pavement highway. In this study, the possibility of producing high performance polymer concrete by using Styrene Butadiene Rubber (SBR) emulsion with various (SBR) percents of 5,10 ,15, and 20 % by weight of cement has been investigated. The compressive, splitting tensile and flexural strengths and dynamic modulus of elasticity tests were conducted after age of 7 and 28 days for control without polymer and SBR concretes. A total of (30) cubes, (30) cylinders and (30) prisms were prepared using different types of concrete mixes. The AASHTO guide-1993 method was used to determine slab concrete thickness of rigid pavement highway in case of using various SBR polymer concrete mixture types. The research results indicate that the use of 10% SBR by weight of cement leads to produce high performance concrete especially with regard to mechanical properties and structural relative to corresponding control concrete.Keywords: rigid pavement highway, styrene–butadiene rubber (SBR) latex, compressive test, splitting tensile test, flexural test and dynamic modulus of elasticity test
Procedia PDF Downloads 3229953 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes
Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah
Abstract:
Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction
Procedia PDF Downloads 639952 Structural Health Monitoring of Buildings and Infrastructure
Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi
Abstract:
Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating
Procedia PDF Downloads 3389951 Effect of the Structural Parameters on Subbands of Fibonacci AlxGa1-xAs/GaAs Superlattices
Authors: Y. Sefir, Z. Aziz, S. Cherid, Z. F. Meghoufel, F. Bendahama, S. Terkhi, B. Bouadjemi. A. Zitouni S. Bentata
Abstract:
This work is to study the effect of the variation of structural parameters on the band structure in the quasiperiodic Fibonacci superlattices AlxGa1-xAs/GaAs using the formalism of the transfer matrix and Airy function. Our results show that increasing the width of Fibonacci’s wells of allows to the confinement of subminibands with a widening of minigaps, this causes a consistent and coherent fragmentation. The barrier thickness of Fibonacci bf acts on the width of subminibands by controlling the interaction force between neighboring eigenstates. Its increase gives rise to singularly extended states. The barrier height Fibonacci Vf permit to control the degree of structural disorder in these structures. The variation of these parameters permits the design of laser with modulated wavelength. Procedia PDF Downloads 3749950 Polymorphism of HMW-GS in Collection of Wheat Genotypes
Authors: M. Chňapek, M. Tomka, R. Peroutková, Z. Gálová
Abstract:
Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation.Keywords: genotype identification, HMW-GS, wheat quality, polymorphism
Procedia PDF Downloads 4639949 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System
Authors: Xuezhang Hou
Abstract:
In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations
Procedia PDF Downloads 1369948 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus
Authors: Yesim Tumsek, Erkan Celebi
Abstract:
In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus
Procedia PDF Downloads 2699947 Online Estimation of Clutch Drag Torque in Wet Dual Clutch Transmission Based on Recursive Least Squares
Authors: Hongkui Li, Tongli Lu , Jianwu Zhang
Abstract:
This paper focuses on developing an estimation method of clutch drag torque in wet DCT. The modelling of clutch drag torque is investigated. As the main factor affecting the clutch drag torque, dynamic viscosity of oil is discussed. The paper proposes an estimation method of clutch drag torque based on recursive least squares by utilizing the dynamic equations of gear shifting synchronization process. The results demonstrate that the estimation method has good accuracy and efficiency.Keywords: clutch drag torque, wet DCT, dynamic viscosity, recursive least squares
Procedia PDF Downloads 3189946 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor
Authors: F. Rarbi, D. Dzahini, W. Uhring
Abstract:
In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register
Procedia PDF Downloads 4189945 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization
Procedia PDF Downloads 1219944 Numerical Modeling of Structural Failure of a Ship During the Collision Event
Authors: Adjal Yassine, Semmani Amar
Abstract:
During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships.Keywords: collsion, strucural failure, ship, finite element analysis
Procedia PDF Downloads 1009943 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting
Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini
Abstract:
Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys
Procedia PDF Downloads 1079942 Parameters Estimation of Multidimensional Possibility Distributions
Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin
Abstract:
We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification
Procedia PDF Downloads 4709941 The Effect of Social Structural Change on the Traditional Turkish Houses Becoming Unusable
Authors: Gamze Fahriye Pehlivan, Tulay Canitez
Abstract:
The traditional Turkish houses becoming unusable are a result of the deterioration of the balanced interaction between users and house (human and house) continuing during the history. Especially depending upon the change in social structure, the houses becoming neglected do not meet the desires of the users and do not have the meaning but the shelter are becoming unusable and are being destroyed. A conservation policy should be developed and renovations should be made in order to pass the traditional houses carrying the quality of a cultural and historical document presenting the social structure, the lifestyle and the traditions of its own age to the next generations and to keep them alive.Keywords: house, social structural change, social structural, traditional Turkish houses
Procedia PDF Downloads 2889940 Structural Performance of Composite Steel and Concrete Beams
Authors: Jakub Bartus
Abstract:
In general, composite steel and concrete structures present an effective structural solution utilizing full potential of both materials. As they have a numerous advantages on the construction side, they can reduce greatly the overall cost of construction, which is the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behaviour having web openings but emphasizes the influence of these openings on the total strain distribution at the level of steel bottom flange as well. The major investigation was focused on a change of structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime object. The study is devided into analytical and numerical part. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered description of imposed structural issue in a form of a finite element model (FEM) using strut and shell elements accounting for material non-linearities. As an outcome, a number of conclusions were drawn describing and explaining an effect of web opening presence on the structural performance of composite beams.Keywords: composite beam, web opening, steel flange, totalstrain, finite element analysis
Procedia PDF Downloads 689939 Solutions for Comfort and Safety on Vibrations Resulting from the Action of the Wind on the Building in the Form of Portico with Four Floors
Authors: G. B. M. Carvalho, V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.Keywords: dynamic vibration absorber, structure, comfort, safety, wind behavior, structure
Procedia PDF Downloads 407