Search results for: standardization artificial intelligence
2366 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 1492365 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 4842364 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence
Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello
Abstract:
Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care
Procedia PDF Downloads 762363 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.Keywords: artificial intelligence, neurofinance, neuropsychology, risk management
Procedia PDF Downloads 1382362 'Explainable Artificial Intelligence' and Reasons for Judicial Decisions: Why Justifications and Not Just Explanations May Be Required
Authors: Jacquelyn Burkell, Jane Bailey
Abstract:
Artificial intelligence (AI) solutions deployed within the justice system face the critical task of providing acceptable explanations for decisions or actions. These explanations must satisfy the joint criteria of public and professional accountability, taking into account the perspectives and requirements of multiple stakeholders, including judges, lawyers, parties, witnesses, and the general public. This research project analyzes and integrates two existing literature on explanations in order to propose guidelines for explainable AI in the justice system. Specifically, we review three bodies of literature: (i) explanations of the purpose and function of 'explainable AI'; (ii) the relevant case law, judicial commentary and legal literature focused on the form and function of reasons for judicial decisions; and (iii) the literature focused on the psychological and sociological functions of these reasons for judicial decisions from the perspective of the public. Our research suggests that while judicial ‘reasons’ (arguably accurate descriptions of the decision-making process and factors) do serve similar explanatory functions as those identified in the literature on 'explainable AI', they also serve an important ‘justification’ function (post hoc constructions that justify the decision that was reached). Further, members of the public are also looking for both justification and explanation in reasons for judicial decisions, and that the absence of either feature is likely to contribute to diminished public confidence in the legal system. Therefore, artificially automated judicial decision-making systems that simply attempt to document the process of decision-making are unlikely in many cases to be useful to and accepted within the justice system. Instead, these systems should focus on the post-hoc articulation of principles and precedents that support the decision or action, especially in cases where legal subjects’ fundamental rights and liberties are at stake.Keywords: explainable AI, judicial reasons, public accountability, explanation, justification
Procedia PDF Downloads 1262361 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests
Authors: Rose Shayeghi, Pejman Hosseinioun
Abstract:
The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.Keywords: multiple intelligence, grammar, ELT, EFL, TIMI
Procedia PDF Downloads 4902360 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 4412359 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 1542358 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 4302357 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage
Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad
Abstract:
Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.Keywords: yoghurt, artificial sweetener, storage, quality parameters
Procedia PDF Downloads 4762356 Rights-Based Approach to Artificial Intelligence Design: Addressing Harm through Participatory ex ante Impact Assessment
Authors: Vanja Skoric
Abstract:
The paper examines whether the impacts of artificial intelligence (AI) can be meaningfully addressed through the rights-based approach to AI design, investigating in particular how the inclusive, participatory process of assessing the AI impact would make this viable. There is a significant gap between envisioning rights-based AI systems and their practical application. Plausibly, internalizing human rights approach within AI design process might be achieved through identifying and assessing implications of AI features human rights, especially considering the case of vulnerable individuals and communities. However, there is no clarity or consensus on how such an instrument should be operationalised to usefully identify the impact, mitigate harms and meaningfully ensure relevant stakeholders’ participation. In practice, ensuring the meaningful inclusion of those individuals, groups, or entire communities who are affected by the use of the AI system is a prerequisite for a process seeking to assess human rights impacts and risks. Engagement in the entire process of the impact assessment should enable those affected and interested to access information and better understand the technology, product, or service and resulting impacts, but also to learn about their rights and the respective obligations and responsibilities of developers and deployers to protect and/or respect these rights. This paper will provide an overview of the study and practice of the participatory design process for AI, including inclusive impact assessment, its main elements, propose a framework, and discuss the lessons learned from the existing theory. In addition, it will explore pathways for enhancing and promoting individual and group rights through such engagement by discussing when, how, and whom to include, at which stage of the process, and what are the pre-requisites for meaningful and engaging. The overall aim is to ensure using the technology that works for the benefit of society, individuals, and particular (historically marginalised) groups.Keywords: rights-based design, AI impact assessment, inclusion, harm mitigation
Procedia PDF Downloads 1502355 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement
Authors: Magdi Elmessiry, Adel Elmessiry
Abstract:
The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain
Procedia PDF Downloads 2612354 The Relation between Spiritual Intelligence and Organizational Health and Job Satisfaction among the Female Staff in Islamic Azad University of Marvdasht
Authors: Reza Zarei
Abstract:
The result of the present study is to determine the relation between spiritual intelligence and organizational health and job satisfaction among the female staff in Islamic Azad University of Marvdasht. The population of the study includes the female staff and the faculty of Islamic Azad University of Marvdasht. The method is correlational and the instrument in the research is three questionnaires namely the spiritual intelligence by (ISIS), Amraam and Dryer, organizational health by Fieldman and Job satisfaction questionnaire. In order to test the hypotheses we used interpretive statistics, Pearson and regression correlation coefficient. The findings show that there is a significant relation between the spiritual intelligence and organizational health among the female staff of this unit. In addition, the organizational health has a significant relation with the elements of self-consciousness and social skills and on the other hand, job satisfaction is in significant relation with the elements of self-consciousness, self-control, self-provocation, sympathy and social skills in the whole sample regardless of the participants' gender. Finally, the results of multiple regression and variance analysis showed that using the variables of the spiritual intelligence of the female staff could predict the organizational health and their job satisfaction.Keywords: job satisfaction, spiritual intelligence, organizational health, Islamic Azad University
Procedia PDF Downloads 3762353 Emotional Intelligence and Gender Role Attitudes of Married Individuals: Moderating Role of Gender and Work Status
Authors: Saima Kalsoom, Sobia Masood, Muhammad Faran
Abstract:
This study aimed to examine the association between emotional intelligence and gender role attitudes of married individuals. Another aim of this study was to test the moderating role of gender work status of married individuals for predicting gender role attitudes from emotional intelligence. A sample of (N = 500) married working men and women (both working & housewives) was approached through purposive convenience sampling technique. The data was collected employing cross-sectional research design. The indigenous versions of the Gender Role Attitudes Scale and perceived Emotional Intelligence Scale were used. The results of alpha coefficients for both the scales and subscales used in this study designated satisfactory evidence for internal consistency and reliability. Assessment of correlation coefficients showed significant positive correlation between gender role attitudes and emotional intelligence, subfactors of emotional intelligence i.e., emotional self-regulation, emotional self-awareness, and interpersonal skills with gender role attitudes. Results of model testing revealed that gender (the effect was significant for women) and work status (the effect was more significant for married working women than married working men and housewives) of the married individuals significantly moderated the relationship between emotional intelligence and gender role attitudes into the positive direction. Further, it was also found that gender and work status also moderated the relationship between emotional self-regulation (as sub factor of emotional intelligence) and gender role attitudes in a positive direction. In conclusion, this empirical evidence is vital contribution derived from the traditional and collectivistic socio-cultural background of Pakistan.Keywords: gender role attitudes, emotional intelligence, emotional self-regulation, gender, work status, married working women
Procedia PDF Downloads 1122352 Industrial Ecology Perspectives of Food Supply Chains: A Framework of Analysis
Authors: Luciano Batista, Sylvia Saes, Nuno Fouto, Liam Fassam
Abstract:
This paper introduces the theoretical and methodological basis of an analytical framework conceived with the purpose of bringing industrial ecology perspectives into the core of the underlying disciplines supporting analyses in studies concerned with environmental sustainability aspects beyond the product cycle in a supply chain. Given the pressing challenges faced by the food sector, the framework focuses upon waste minimization through industrial linkages in food supply chains. The combination of industrial ecology practice with basic LCA elements, the waste hierarchy model, and the spatial scale of industrial symbiosis allows the standardization of qualitative analyses and associated outcomes. Such standardization enables comparative analysis not only between different stages of a supply chain, but also between different supply chains. The analytical approach proposed contributes more coherently to the wider circular economy aspiration of optimizing the flow of goods to get the most out of raw materials and cuts wastes to a minimum.Keywords: by-product synergy, food supply chain, industrial ecology, industrial symbiosis
Procedia PDF Downloads 4212351 Response Development of larvae Portunus pelagicus to Artificial Feeding Predigest
Authors: Siti Aslamyah, Yushinta Fujaya, Okto Rimaldi
Abstract:
One of the problems faced in the crab hatchery operations is the reliance on the use of natural feed. This study aims to analyze the response of larval development and determine the initial stages crab larvae begin to fully able to accept artificial feeding predigest with the help of probiotic Bacillus sp. The experiment was conducted in June 2014 through July 2014 at the location of the scale backyard hatcheries, Bojo village Mallusettasi sub-district, district Barru. This study was conducted in two stages larval rearing. The first stage is designed in a completely randomized design with 5 treatments and each with 3 repetitions, ie, without the use of artificial feeding; predigest feed given from zoea 1 - megalopa; predigest feed given since zoea 2 - megalopa; predigest feed given from zoea 3 - megalopa; and feed predigest given since zoea 4 - megalopa. The second stage of the two treatments, i.e. comparing artificial feeding without and with predigest. The results showed that the artificial feeding predigest able to replace the use of natural feed started zoea 3 generated based on the survival rate. Artificial feeding predigest provide a higher survival rate (16%) compared to artificial diets without predigest only 10.8%. However, feed predigest not give a different effect on the rate of development of stadia. Cell activity in larvae that received artificial feed predigest higher with RNA-DNA ratio of 8.88 compared with no predigest only 5:36. This research is very valuable information for crab hatchery hatchery scale households have limitations in preparing natural food.Keywords: artificial feeding, development of stadia, larvae Portunus pelagicus, predigest
Procedia PDF Downloads 5332350 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 692349 Artificial Intelligent-Based Approaches for Task Offloading, Resource Allocation and Service Placement of Internet of Things Applications: State of the Art
Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib
Abstract:
In order to support the continued growth, critical latency of IoT applications, and various obstacles of traditional data centers, mobile edge computing (MEC) has emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. By adopting a MEC structure, IoT applications could be executed locally, on an edge server, different fog nodes, or distant cloud data centers. However, we are often faced with wanting to optimize conflicting criteria such as minimizing energy consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge devices and trying to keep high performance (reducing response time, increasing throughput and service availability) at the same time. Achieving one goal may affect the other, making task offloading (TO), resource allocation (RA), and service placement (SP) complex processes. It is a nontrivial multi-objective optimization problem to study the trade-off between conflicting criteria. The paper provides a survey on different TO, SP, and RA recent multi-objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications.Keywords: mobile edge computing, multi-objective optimization, artificial intelligence approaches, task offloading, resource allocation, service placement
Procedia PDF Downloads 1152348 Monitoring Co-Creation: A Survey of Lithuanian Urban Communities
Authors: Aelita Skarzauskiene, Monika Maciuliene
Abstract:
In this paper, we conduct a systematic survey of urban communities in Lithuania to evaluate their potential to co-create collective intelligence or “civic intelligence” applying Digital Co-creation Index methodology that includes different socio-technological indicators. Civic intelligence is a form of collective intelligence that refers to the group’s capacity to perceive societal problems and to address them effectively. The research focuses on evaluation of diverse organizational designs that increase efficient collective performance. The current scientific project advanced the state of the art by evaluating the basic preconditions in the urban communities through which the collective intelligence is being co-created under the systemic manner. The research subject is the “bottom up” digital enabled urban platforms, initiated by Lithuanian public organizations, civic movements or business entities. The web-based monitoring results obtained by applying a social indices calculation methodology and Pearson correlation analysis provided the information about the potential and limits of the urban communities and what possible changes need to be implemented to overcome the limitations.Keywords: computer supported collaboration, socio-technological system, collective intelligence, networked society
Procedia PDF Downloads 2032347 Innovation Management in E-Health Care: The Implementation of New Technologies for Health Care in Europe and the USA
Authors: Dariusz M. Trzmielak, William Bradley Zehner, Elin Oftedal, Ilona Lipka-Matusiak
Abstract:
The use of new technologies should create new value for all stakeholders in the healthcare system. The article focuses on demonstrating that technologies or products typically enable new functionality, a higher standard of service, or a higher level of knowledge and competence for clinicians. It also highlights the key benefits that can be achieved through the use of artificial intelligence, such as relieving clinicians of many tasks and enabling the expansion and greater specialisation of healthcare services. The comparative analysis allowed the authors to create a classification of new technologies in e-health according to health needs and benefits for patients, doctors, and healthcare systems, i.e., the main stakeholders in the implementation of new technologies and products in healthcare. The added value of the development of new technologies in healthcare is diagnosed. The work is both theoretical and practical in nature. The primary research methods are bibliographic analysis and analysis of research data and market potential of new solutions for healthcare organisations. The bibliographic analysis is complemented by the author's case studies of implemented technologies, mostly based on artificial intelligence or telemedicine. In the past, patients were often passive recipients, the end point of the service delivery system, rather than stakeholders in the system. One of the dangers of powerful new technologies is that patients may become even more marginalised. Healthcare will be provided and delivered in an increasingly administrative, programmed way. The doctor may also become a robot, carrying out programmed activities - using 'non-human services'. An alternative approach is to put the patient at the centre, using technologies, products, and services that allow them to design and control technologies based on their own needs. An important contribution to the discussion is to open up the different dimensions of the user (carer and patient) and to make them aware of healthcare units implementing new technologies. The authors of this article outline the importance of three types of patients in the successful implementation of new medical solutions. The impact of implemented technologies is analysed based on: 1) "Informed users", who are able to use the technology based on a better understanding of it; 2) "Engaged users" who play an active role in the broader healthcare system as a result of the technology; 3) "Innovative users" who bring their own ideas to the table based on a deeper understanding of healthcare issues. The authors' research hypothesis is that the distinction between informed, engaged, and innovative users has an impact on the perceived and actual quality of healthcare services. The analysis is based on case studies of new solutions implemented in different medical centres. In addition, based on the observations of the Polish author, who is a manager at the largest medical research institute in Poland, with analytical input from American and Norwegian partners, the added value of the implementations for patients, clinicians, and the healthcare system will be demonstrated.Keywords: innovation, management, medicine, e-health, artificial intelligence
Procedia PDF Downloads 202346 Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction
Authors: Abdelrhman Elagez, Rolla Monib
Abstract:
This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.Keywords: risk management, construction, artificial intelligence, technology
Procedia PDF Downloads 992345 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 832344 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers
Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko
Abstract:
The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.Keywords: artificial neural networks, fluorescence, data aggregation, biomarkers
Procedia PDF Downloads 7102343 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 192342 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 1672341 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3242340 Assessing Readiness Model for Business Intelligence Implementation in Organization
Authors: Abdul Razak Rahmat, Azizah Ahmad, Azman Ta’aa
Abstract:
The deployment of Business Intelligence (BI) for organization at the beginning phase is very crucial. Results from the previous studies found that more than half of the BI project fails to meet the objective even though a lot money are spent. Based on that problem, the readiness level of BI for the organization is important to identify in order to reduce the risk before the actual BI project is implemented. In this paper, rigorous literature review on the aspect success factors such as Critical Success Factors (CSFs), Readiness Factors (RFs), Success Factors (SFs), are discussed by different authors. The paper also adopted a few models from previous study as a guide for the assessment of BI readiness. The expected finding from this research is the Business Intelligent Readiness Model (BiRM) as a guild before implement the BI system.Keywords: business intelligence readiness model, business intelligence for higher learning, BI readiness factors, BI critical success factors(CSF)
Procedia PDF Downloads 3712339 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.Keywords: artificial intelligence, architecture, e-learning, software engineering, processing
Procedia PDF Downloads 1912338 The Impact of Interrelationship between Business Intelligence and Knowledge Management on Decision Making Process: An Empirical Investigation of Banking Sector in Jordan
Authors: Issa M. Shehabat, Huda F. Y. Nimri
Abstract:
This paper aims to study the relationship between knowledge management in its processes, including knowledge creation, knowledge sharing, knowledge organization, and knowledge application, and business intelligence tools, including OLAP, data mining, and data warehouse, and their impact on the decision-making process in the banking sector in Jordan. A total of 200 questionnaires were distributed to the sample of the study. The study hypotheses were tested using the statistical package SPSS. Study findings suggest that decision-making processes were positively related to knowledge management processes. Additionally, the components of business intelligence had a positive impact on decision-making. The study recommended conducting studies similar to this study in other sectors such as the industrial, telecommunications, and service sectors to contribute to enhancing understanding of the role of the knowledge management processes and business intelligence tools.Keywords: business intelligence, knowledge management, decision making, Jordan, banking sector
Procedia PDF Downloads 1442337 African Personhood and the Regulation of Brain-Computer Interface (BCI) Technologies: A South African view
Authors: Meshandren Naidoo, Amy Gooden
Abstract:
Implantable brain-computer interface (BCI) technologies have developed to the point where brain-computer communication is possible. This has great potential in the medical field, as it allows persons who have lost capacities. However, ethicists and regulators call for a strict approach to these technologies due to the impact on personhood. This research demonstrates that the personhood debate is more nuanced and that where an African approach to personhood is used, it may produce results more favorable to the development and use of this technology.Keywords: artificial intelligence, law, neuroscience, ethics
Procedia PDF Downloads 132