Search results for: road excitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1635

Search results for: road excitation

1155 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 211
1154 Heavy Vehicles Crash Injury Severity at T-Intersections

Authors: Sivanandan Balakrishnan, Sara Moridpour, Richard Tay

Abstract:

Heavy vehicles make a significant contribution to many developed economies, including Australia, because they are a major means of transporting goods within these countries. With the increase in road freight, there will be an increase in the heavy vehicle traffic proportion, and consequently, an increase in the possibility of collisions involving heavy vehicles. Crashes involving heavy vehicles are a major road safety concern because of the higher likelihood of fatal and serious injury, especially to any small vehicle occupant involved. The primary objective of this research is to identify the factors influencing injury severity to occupants in vehicle collisions involving heavy vehicle at T- intersection using a binary logit model in Victoria, Australia. Our results show that the factors influencing injury severity include occupants' gender, age and restraint use. Also, vehicles' type, movement, point-of-impact and damage, time-of-day, day-of-week and season, higher percentage of trucks in traffic volume, hit pedestrians, number of occupants involved and type of collisions are associated with severe injury.

Keywords: binary logit model, heavy vehicle, injury severity, T-intersections

Procedia PDF Downloads 373
1153 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

Preventing piping fatigue flow induced vibration in the Oil & Gas sector demands not only the constant development of engineering design methodologies based on available software packages, but also special piping support technologies for designing safe and reliable piping systems. The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically intrinsically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se, and the pipework associated steel support structure. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system in order to perform the required piping modification. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the type of process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces, the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap), and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it was possible to resolve the piping vibration problem throughout redesigning adequately the existing static piping supports and by adding new viscous dampers supports. This was conducted on-stream at the oil crude pipeline in question without the necessity of reducing the production of the plant. Concluding that the application of the methodology of this paper can be applied to solve similar cases in a straightforward manner.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia PDF Downloads 115
1152 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 380
1151 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation

Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou

Abstract:

The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.

Keywords: acceleration, comfort, motorcycle, safety, skew superelevation

Procedia PDF Downloads 139
1150 Life Cycle Analysis (LCA) for Transportation of Cross-Laminated Timber (CLT) Panels Comparing Two Origin Points of Supply

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

This overall research is targeted at the assessment of the new CLT-built Adohi Hall residential building located on the campus of the University of Arkansas in Fayetteville, Arkansas. The purpose of the Life Cycle Assessment (LCA) study is to analyze the environmental impacts resulting from the transportation route of the Austrian imported CLT to the construction site with those of the CLT assumed to be originating from Conway, Arkansas. The Global Warming Potential (GWP) of CLT from Europe (Styria-Graz in Austria) to the site was first investigated. The results were then compared with the GWP of the CLT produced in Conway, Arkansas. The impacts of each scenario, using the Ecoinvent database, are then calculated and compared against each other to find the most environmentally efficient scenario in terms of global warming impacts. The quantification of GWP is associated with different transportation systems, water, road, and rail. Obtained through comparison, the findings reveal that the use of local materials is more efficient. In addition, transportation by water produces less Greenhouse Gas (GHG) emission in comparison to freight transportation by rail and road. Thus, besides the travel distance, the utilized transportation system is still a significant factor and should be seriously considered in making decisions for moving materials.

Keywords: comparative analysis, GWP, LCA, transportation

Procedia PDF Downloads 226
1149 Analysis of the Accuracy of Earth Movement with Drone Surveys

Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García

Abstract:

New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.

Keywords: drone, earth movement control, global position system, surveying technology.

Procedia PDF Downloads 171
1148 Europium Chelates as a Platform for Biosensing

Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner

Abstract:

Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.

Keywords: lanthanides, europium, chelates, biosensors

Procedia PDF Downloads 506
1147 Effects of Cannabis and Cocaine on Driving Related Tasks of Perception, Cognition, and Action

Authors: Michelle V. Tomczak, Reyhaneh Bakhtiari, Aaron Granley, Anthony Singhal

Abstract:

Objective: Cannabis and cocaine are associated with a range of mental and physical effects that can impair aspects of human behavior. Driving is a complex cognitive behavior that is an essential part of everyday life and can be broken down into many subcomponents, each of which can uniquely impact road safety. With the growing movement of jurisdictions to legalize cannabis, there is an increased focus on impairment and driving. The purpose of this study was to identify driving-related cognitive-performance deficits that are impacted by recreational drug use. Design and Methods: With the assistance of law enforcement agencies, we recruited over 300 participants under the influence of various drugs including cannabis and cocaine. These individuals performed a battery of computer-based tasks scientifically proven to be re-lated to on-road driving performance and designed to test response-speed, memory processes, perceptual-motor skills, and decision making. Data from a control group with healthy non-drug using adults was collected as well. Results: Compared to controls, the drug group showed def-icits in all tasks. The data also showed clear differences between the cannabis and cocaine groups where cannabis users were faster, and performed better on some aspects of the decision-making and perceptual-motor tasks. Memory performance was better in the cocaine group for simple tasks but not more complex tasks. Finally, the participants who consumed both drugs performed most similarly to the cannabis group. Conclusions: Our results show distinct and combined effects of cannabis and cocaine on human performance relating to driving. These dif-ferential effects are likely related to the unique effects of each drug on the human brain and how they distinctly contribute to mental states. Our results have important implications for road safety associated with driver impairment.

Keywords: driving, cognitive impairment, recreational drug use, cannabis and cocaine

Procedia PDF Downloads 109
1146 An Approach to Wind Turbine Modeling for Increasing Its Efficiency

Authors: Rishikesh Dingari, Sai Kiran Dornala

Abstract:

In this paper, a simple method of achieving maximum power by mechanical energy transmission device (METD) with integration to induction generator is proposed. METD functioning is explained and dynamic response of system to step input is plotted. Induction generator is being operated at self-excited mode with excitation capacitor at stator. Voltage and current are observed when linked to METD.

Keywords: mechanical energy transmitting device(METD), self-excited induction generator, wind turbine, hydraulic actuators

Procedia PDF Downloads 332
1145 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 346
1144 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton

Abstract:

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication

Procedia PDF Downloads 148
1143 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 373
1142 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.

Keywords: asphalt, glass, pavement, recycled aggregate, sustainability

Procedia PDF Downloads 220
1141 Entrepreneurial Orientation and Customer Satisfaction: Evidences nearby Khao San Road

Authors: Vichada Chokesikarin

Abstract:

The study aims to determine which factors account for customer satisfaction and to investigate the relationship between entrepreneurial orientation and business success, in particular, context of the information understanding of hostel business in Pranakorn district, Bangkok and the significant element of entrepreneurship in tourism industry. This study covers 352 hostels customers and 61 hostel owners/managers nearby Khao San Road. Data collection methods were used by survey questionnaire and a series of hypotheses were developed from services marketing literature. The findings suggest the customer satisfaction most influenced by image, service quality, room quality and price accordingly. Furthermore the findings revealed that significant relationships exist between entrepreneurial orientation and business success; while competitive aggressiveness was found unrelated. The ECSI model’s generic measuring customer satisfaction was found partially mediate the business success. A reconsideration of other variables applicable should be supported with the model of hostel business. The study provides context and overall view of hostel business while discussing from the entrepreneurial orientation to customer satisfaction, thereby reducing decision risk on hostel investment.

Keywords: customer satisfaction, ECSI model, entrepreneurial orientation, small hotel, hostel, business performance

Procedia PDF Downloads 323
1140 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.

Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia

Procedia PDF Downloads 404
1139 Safety Approach Highway Alignment Optimization

Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai

Abstract:

An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.

Keywords: safety, highway geometry, optimization, alignment

Procedia PDF Downloads 396
1138 Loading by Number Strategy for Commercial Vehicles

Authors: Ramalan Musa Yerima

Abstract:

The paper titled “loading by number” explained a strategy developed recently by Zonal Commanding Officer of the Federal Road Safety Corps of Nigeria, covering Sokoto, Kebbi and Zamfara States of Northern Nigeria. The strategy is aimed at reducing competition, which will invariably leads to the reduction in speed, reduction in dangerous driving, reduction in crash rate, reduction in injuries, reduction in property damages and reduction in death through road traffic crashes (RTC). This research paper presents a study focused on enhancing the safety of commercial vehicles. The background of this study highlights the alarming statistics related to commercial vehicle crashes in Nigeria with focus on Sokoto, Kebbi and Zamfara States, which often result in significant damage to property, loss of lives, and economic costs. The significance and aims is to investigate and propose effective strategy to enhance the safety of commercial vehicles. The study recognizes the pressing need for heightened safety measures in commercial transportation, as it impacts not only the well-being of drivers and passengers but also the overall public safety. To achieve the objectives, an examination of accident data, including causes and contributing factors, was performed to identify critical areas for improvement. The major finding of the study reveals that when competition comes into play within the realm of commercial driving, it has detrimental effects on road safety and resource management. Commercial drivers are pushed to complete their routes quickly, deliver goods on time or they pushed themselves to arrive quickly for more passengers and new contracts. This competitive environment, fuelled by internal and external pressures such as tight deadlines, poverty and greed, often leads to sad endings. The study recommend that if a strategy called loading by number is integrated with other multiple safety measures such as driver training programs, regulatory enforcement, and infrastructure improvements, commercial vehicle safety can be significantly enhanced. "Loading by Number” approach is design to ensure that the sequence of departure of drivers from motor park ‘A’ would be communicated to motor park officials of park ‘B’, which would be considered sequentially when giving them returning passengers, regardless of the first to arrive. In conclusion, this paper underscores the significance of improving the safety measures of commercial vehicles, as they are often larger and heavier than other vehicles on the road. Whenever they are involved in accidents, the consequences can be more severe. Commercial vehicles are also frequently involved in long-haul or interstate transportation, which means they cover longer distances and spend more time on the road. This increased exposure to driving conditions increases the probability of accidents occurring. By implementing the suggested measures, policymakers, transportation authorities, and industry stakeholders can work collectively towards ensuring a safer commercial transportation system.

Keywords: commercial, safety, strategy, transportation

Procedia PDF Downloads 44
1137 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: space syntax, urban regeneration, spatial structure, official land price

Procedia PDF Downloads 309
1136 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 123
1135 Strategy of Loading by Number for Commercial Vehicles

Authors: Ramalan Musa Yerima

Abstract:

The paper titled “Loading by number” explained a strategy developed recently by the Zonal Commanding Officer of the Federal Road Safety Corps of Nigeria, covering Sokoto, Kebbi and Zamfara States of Northern Nigeria. The strategy is aimed at reducing competition, which will invariably lead to a reduction in speed, reduction in dangerous driving, reduction in crash rate, reduction in injuries, reduction in property damages and reduction in death through road traffic crashes (RTC). This research paper presents a study focused on enhancing the safety of commercial vehicles. The background of this study highlights the alarming statistics related to commercial vehicle crashes in Nigeria with a focus on Sokoto, Kebbi and Zamfara States, which often result in significant damage to property, loss of lives, and economic costs. The significance and aims is to investigate and propose an effective strategy to enhance the safety of commercial vehicles. The study recognizes the pressing need for heightened safety measures in commercial transportation, as it impacts not only the well-being of drivers and passengers but also the overall public safety. To achieve the objectives, an examination of accident data, including causes and contributing factors, was performed to identify critical areas for improvement. The major finding of the study reveals that when competition comes into play within the realm of commercial driving, it has detrimental effects on road safety and resource management. Commercial drivers are pushed to complete their routes quickly and deliver goods on time, or they push themselves to arrive quickly for more passengers and new contracts. This competitive environment, fuelled by internal and external pressures such as tight deadlines, poverty and greed, often leads to sad endings. The study recommends that if a strategy called loading by number is integrated with other multiple safety measures, such as driver training programs, regulatory enforcement, and infrastructure improvements, commercial vehicle safety can be significantly enhanced. "Loading by Number” approach is designed to ensure that the sequence of departure of drivers from the motor park ‘A’ would be communicated to motor park officials of park ‘B’, which would be considered sequentially when giving them returning passengers, regardless of the first to arrive. In conclusion, this paper underscores the significance of improving the safety measures of commercial vehicles, as they are often larger and heavier than other vehicles on the road. Whenever they are involved in accidents, the consequences can be more severe. Commercial vehicles are also frequently involved in long-haul or interstate transportation, which means they cover longer distances and spend more time on the road. This increased exposure to driving conditions increases the probability of accidents occurring. By implementing the suggested measures, policymakers, transportation authorities, and industry stakeholders can work collectively toward ensuring a safer commercial transportation system.

Keywords: commercial, safety, strategy, transport

Procedia PDF Downloads 47
1134 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: Nour Hassan Ismail, Abdelmonem Nassar, Khaled Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper, new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: quantum dots, nano-particles, LSPR

Procedia PDF Downloads 462
1133 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions

Procedia PDF Downloads 335
1132 The Red Persian Carpet: Iran as Semi-Periphery in China's Belt and Road Initiative-Bound World-System

Authors: Toufic Sarieddine

Abstract:

As the belt and road Initiative (henceforth, BRI) enters its 9th year, Iran and China are forging stronger ties on economic and military fronts, a development which has not only caused alarm in Washington but also risks staining China’s relationships with the oil-rich Gulf monarchies. World-systems theory has been used to examine the impact of the BRI on the current world order, with scholarship split on the capacity of China to emerge as a hegemon contending with the US or even usurping it. This paper argues the emergence of a new China-centered world-system comprised of states/areas and processes participating in the BRI and overlapping with the global world-system under (shaky) US hegemony. This world-system centers around China as core and hegemon via economic domination, capable new institutions (Shanghai Cooperation Council), legal modi operandi, the common goal of infrastructure development to rally support among developing states, and other indicators of hegemony outlined in world-systems theory. In this regard, while states like Pakistan could become peripheries to China in the BRI-bound world-system via large-scale projects such as the China-Pakistan Economic Corridor, Iran has greater capacities and influence in the Middle East, making it superior to a periphery. This paper thus argues that the increasing proximity between Iran and China sees the former becoming a semi-periphery with respect to China within the BRI-bound world-system, having economic dependence on its new core and hegemon while simultaneously wielding political and military influence on weaker states such as Iraq, Lebanon, Yemen, and Syria. The indicators for peripheralization as well as the characteristics of a semi-periphery outlined in world-systems theory are used to examine the current economic, political, and militaristic dimensions of Iran and China’s growing relationship, as well as the trajectory of these dimensions as part of the BRI-bound world-system.

Keywords: belt and road initiative, China, China-Middle East relations, Iran, world-systems analysis

Procedia PDF Downloads 136
1131 Synthesis of Telechelic Polymers for Asphalt Pavements

Authors: Paula C Arroyo, Norma A Sánchez, Mikhail Tlenkopatchev

Abstract:

The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees.

Keywords: asphalt polymers, metathesis polymers, telechelic polymers, modified asphalt

Procedia PDF Downloads 259
1130 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 160
1129 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: RWIS, visibility distance, low visibility, adverse weather

Procedia PDF Downloads 236
1128 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 47
1127 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 79
1126 Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China

Authors: Zhang Hui, Wu Caiqiu, Yuan Xuyin, Qiu Jie, Zhang Hanpei

Abstract:

The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway.

Keywords: heavy metal contamination, roadside, highway, Nemerow Pollution Index

Procedia PDF Downloads 249