Search results for: polymer materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7650

Search results for: polymer materials

7170 Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin

Authors: Muhammad Omer Aijaz, Sajjad Haider, Fahad S. Al Mubddal, Yousef Al-Zeghayer, Waheed A. Al Masry

Abstract:

The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%).

Keywords: polymer hydrogels, chitosan, SEMI-IPN, polyacrylonitrile, epichlorohydrin

Procedia PDF Downloads 342
7169 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 77
7168 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing

Procedia PDF Downloads 444
7167 High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites

Authors: M. Derradji, W. B. Liu

Abstract:

The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.

Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties

Procedia PDF Downloads 127
7166 Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites

Authors: Navid Zarif Karimi, Giangiacomo Minak, Parnian Kianfar

Abstract:

Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength.

Keywords: composite material, delamination, drilling, residual compressive strength

Procedia PDF Downloads 433
7165 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater

Procedia PDF Downloads 295
7164 Combination Approach Using Experiments and Optimal Experimental Design to Optimize Chemical Concentration in Alkali-Surfactant-Polymer Process

Authors: H. Tai Pham, Bae Wisup, Sungmin Jung, Ivan Efriza, Ratna Widyaningsih, Byung Un Min

Abstract:

The middle-phase-microemulsion in Alkaline-Surfactant-Polymer (ASP) solution and oil play important roles in the success of an ASP flooding process. The high quality microemulsion phase has ultralow interfacial tensions and it can increase oil recovery. The research used optimal experimental design and response-surface-methodology to predict the optimum concentration of chemicals in ASP solution for maximum microemulsion quality. Secondly, this optimal ASP formulation was implemented in core flooding test to investigate the effective injection volume. As the results, the optimum concentration of surfactants in the ASP solution is 0.57 wt.% and the highest effective injection volume is 19.33% pore volume.

Keywords: optimize, ASP, response surface methodology, solubilization ratio

Procedia PDF Downloads 324
7163 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 52
7162 The Use of Authentic Materials in the Chinese Language Classroom

Authors: Yiwen Jin, Jing Xiao, Pinfang Su

Abstract:

The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.

Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching

Procedia PDF Downloads 147
7161 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 235
7160 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane

Authors: N. Hasbullah, K. A. Sekak

Abstract:

The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.

Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers

Procedia PDF Downloads 285
7159 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications

Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble

Abstract:

Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.

Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings

Procedia PDF Downloads 69
7158 Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres

Authors: S. O. Ologe, U. P. Anaidhuno, Duru C. A.

Abstract:

This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction.

Keywords: OPEBF, Banana, fibre, hybrid

Procedia PDF Downloads 89
7157 Extrudate Swell under the Effect of Radial Flow and Intrinsic Factors to the Polymer Upstream of the Die

Authors: Hela Krir, Abdelhak Ayadi, Chedly Bradaii

Abstract:

The influence of both intrinsic factors, elastic energy and memory effect, and radial flow on the appearance and the evolution of the extrudate swelling are investigated in the present work. The experiments have been performed with linear polydimethylsiloxane (PDMS) via a capillary rheometer in which a convergent radial flow was created upstream the contraction. The correspondence between the effects of radial flow, entry elastic stored energy and memory effect is discussed. In particular, as the influence of the considered radial flow, extrudate photographs showed that when the gap ratio is reduced, the extrudate swell is lessened than what it is when radial flow geometry is not installed. Moreover, with a narrower gap, the polymer stores less energy during its passage through the die which implies a lower extrudate swelling at the outlet of the die. Results previously mentioned may be related both to shear and elongational components of radial flow.

Keywords: elastic energy, extrudate swell, memory effect, radial flow

Procedia PDF Downloads 149
7156 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 316
7155 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 127
7154 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine

Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi

Abstract:

Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).

Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer

Procedia PDF Downloads 396
7153 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 326
7152 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe

Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara

Abstract:

Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.

Keywords: drag reduction, shear viscosity, gum arabic, injection point

Procedia PDF Downloads 114
7151 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 124
7150 Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles

Authors: Mikołaj Szyca

Abstract:

Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters.

Keywords: composite materials, friction pair, X-ray computed microtomography, railway

Procedia PDF Downloads 49
7149 Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems

Authors: Abdulla Almulla, Wafaa Mahdi

Abstract:

Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages.

Keywords: building materials, NORMs, HNBRA, radionuclides, activity concentrations, expert systems

Procedia PDF Downloads 134
7148 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets

Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch

Abstract:

Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.

Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance

Procedia PDF Downloads 121
7147 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 157
7146 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells

Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles

Procedia PDF Downloads 448
7145 Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries

Authors: Michael T. Ajayi, Oluwakemi E. Fapojuwo

Abstract:

Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same farmers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials.

Keywords: capacity building, extension agents, dissemination, information/technologies

Procedia PDF Downloads 335
7144 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane

Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi

Abstract:

We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.

Keywords: dyes, methylene blue, membrane, activated carbon

Procedia PDF Downloads 42
7143 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 236
7142 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel

Abstract:

This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.

Keywords: multimetallic, forging, experimental, numerical

Procedia PDF Downloads 259
7141 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 101