Search results for: interface soil layer
5984 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 1815983 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology
Authors: Usha Loganathan, Haresh Pandya
Abstract:
Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio
Procedia PDF Downloads 2545982 Soil Degradati̇on Mapping Using Geographic Information System, Remote Sensing and Laboratory Analysis in the Oum Er Rbia High Basin, Middle Atlas, Morocco
Authors: Aafaf El Jazouli, Ahmed Barakat, Rida Khellouk
Abstract:
Mapping of soil degradation is derived from field observations, laboratory measurements, and remote sensing data, integrated quantitative methods to map the spatial characteristics of soil properties at different spatial and temporal scales to provide up-to-date information on the field. Since soil salinity, texture and organic matter play a vital role in assessing topsoil characteristics and soil quality, remote sensing can be considered an effective method for studying these properties. The main objective of this research is to asses soil degradation by combining remote sensing data and laboratory analysis. In order to achieve this goal, the required study of soil samples was taken at 50 locations in the upper basin of Oum Er Rbia in the Middle Atlas in Morocco. These samples were dried, sieved to 2 mm and analyzed in the laboratory. Landsat 8 OLI imagery was analyzed using physical or empirical methods to derive soil properties. In addition, remote sensing can serve as a supporting data source. Deterministic potential (Spline and Inverse Distance weighting) and probabilistic interpolation methods (ordinary kriging and universal kriging) were used to produce maps of each grain size class and soil properties using GIS software. As a result, a correlation was found between soil texture and soil organic matter content. This approach developed in ongoing research will improve the prospects for the use of remote sensing data for mapping soil degradation in arid and semi-arid environments.Keywords: Soil degradation, GIS, interpolation methods (spline, IDW, kriging), Landsat 8 OLI, Oum Er Rbia high basin
Procedia PDF Downloads 1655981 Fire Safety Engineering of Wood Dust Layer or Cloud
Authors: Marzena Półka, Bożena Kukfisz
Abstract:
This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition.Keywords: fire safety engineering, industrial hazards, minimum ignition temperature, wood dust
Procedia PDF Downloads 3195980 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India
Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta
Abstract:
The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment
Procedia PDF Downloads 975979 Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field
Authors: R. Islam, M. A. Haque, K. H. Kabir
Abstract:
A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops.Keywords: brinjal, carbofuran, MRL, residue
Procedia PDF Downloads 5115978 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron
Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi
Abstract:
Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles
Procedia PDF Downloads 2905977 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation
Authors: Ahmed M. Eltohamy
Abstract:
In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.Keywords: geogrid reinforcement, prestress, strip footing, bearing capacity
Procedia PDF Downloads 3075976 Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently.Keywords: FLACD 3D software, pile group, settlement, soil
Procedia PDF Downloads 1285975 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam
Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian
Abstract:
Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam
Procedia PDF Downloads 3765974 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4165973 Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites
Authors: S. C. Kattimani
Abstract:
This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.Keywords: active constrained layer damping (ACLD), doubly curved shells, magneto-electro-elastic, multiferroic composite, smart structures
Procedia PDF Downloads 3115972 Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand
Authors: Charirat Kusonwiriyawong, Supha Photichan, Wannarut Chutibutr
Abstract:
Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available.Keywords: available phosphorus, exchangeable potassium, modified single extractant, organic matter, soil test kits
Procedia PDF Downloads 1455971 X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt
Authors: Marie Kudrnova, Jana Petru
Abstract:
This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR.Keywords: Inconel 625, molten salt, oxide layer, XPS
Procedia PDF Downloads 1415970 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface
Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper
Abstract:
Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding
Procedia PDF Downloads 1685969 Evaluation of Erodibility Status of Soils in Some Areas of Imo and Abia States of Nigeria
Authors: Andy Obinna Ibeje
Abstract:
In this study, the erodibility indices and some soil properties of some cassava farms in selected areas of Abia and Imo States were investigated. This study involves taking measurements of some soil parameters such as permeability, soil texture and particle size analysis from which the erodibility indices were compared. Results showed that soils of the areas are very sandy. The results showed that Isiukwuato with index of 72 has the highest erodibility index. The results also showed that Arondizuogu with index of 34 has the least erodibility index. The results revealed that soil erodibility (k) values varied from 34 to 72. Nkporo has the highest sand content; Inyishie has the least silt content. The result indicates that there were respectively strong inverse relationship between clay and silt contents and erodibility index. On the other hand, sand, organic matter and moisture contents as well as soil permeability has significantly high positive correlation with soil erodibility and it can be concluded that particle size distribution is a major finger print on the erodibility index of soil in the study area. It is recommended that safe cultural practices like crop rotation, matching and adoption of organic farming techniques be incorporated into farming communities of Abia and Imo States in order to stem the advances of erosion in the study area.Keywords: erodibility, indices, soil, sand
Procedia PDF Downloads 3485968 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity
Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib
Abstract:
Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function
Procedia PDF Downloads 1355967 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes
Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng
Abstract:
The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium
Procedia PDF Downloads 3525966 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin
Authors: Dibyendu Das, Santanu Kumar Pal
Abstract:
Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide
Procedia PDF Downloads 2665965 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)
Authors: Slimani Halima
Abstract:
One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe
Procedia PDF Downloads 1055964 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3665963 Study of Physico-Chimical Properties of a Silty Soil
Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef
Abstract:
Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties
Procedia PDF Downloads 4715962 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 2605961 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3105960 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 505959 Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios
Authors: Vineet Tiwari, R. K. Dwivedi, Geetika Srivastava
Abstract:
Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics.Keywords: actuators, cantilever, piezoelectric, sensors, PVDF
Procedia PDF Downloads 4305958 Prediction of Fracture Aperture in Fragmented Rocks
Authors: Hossein Agheshlui, Stephan Matthai
Abstract:
In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface
Procedia PDF Downloads 4175957 Influence of Produced Water Mixed With Crude Oil on the Geotechnical Properties of Sandy Soil
Authors: Khalifa Abdunaser
Abstract:
This study investigated the effects of oil contamination due to pro-duced water leaks that created lakes decades ago, as well as the extent of its im-pact on altering the geotechnical characteristics of the soil, which could act as a barrier to groundwater access The concentration of total petroleum hydrocarbons (TPH), which is the main component in the contaminated soil, was measured using a variety of analyses. Additionally, some extensive laboratory tests were performed to examine the effects on the soil's geotechnical properties, including particle size distribution, shear strength, consistency limits, specific gravity, and permeability coefficient. A clear decrease in TPH concentration was observed with increasing depth, and it is expected to end within only a few meters. It was found that there is a signifi-cant effect of this pollutant on the size of the soil particles, which led to them be-coming coarser than the uncontaminated soil particles. Moreover, it causes a de-crease in fluid and plastic boundaries, as well as an increase in cohesion between soil particles. However, the angle of internal friction decreases with the increase in the content of petroleum hydrocarbons in the soil samples. It came to light that determining the permeability coefficient as one of the physical characteristics of the most important factors responsible for the passage of pollutants in the groundwater, as it showed an obvious reduction in the permeability, which is the main reason dealt as an obstacle to the arrival of oil pollutants to the groundwater.Keywords: TPH, specific gravity, oil lake, Libya
Procedia PDF Downloads 925956 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia
Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli
Abstract:
Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield
Procedia PDF Downloads 1015955 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years
Authors: Fiona Curran-Cournane
Abstract:
Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.Keywords: heavy metals, pollution index, rural and urban land use, soil quality
Procedia PDF Downloads 377