Search results for: global intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6682

Search results for: global intelligence

6202 Evolving Urban Landscapes: Smart Cities and Sustainable Futures

Authors: Mehrzad Soltani, Pegah Rezaei

Abstract:

In response to the escalating challenges posed by resource scarcity, urban congestion, and the dearth of green spaces, contemporary urban areas have undergone a remarkable transformation into smart cities. This evolution necessitates a strategic and forward-thinking approach to urban development, with the primary objective of diminishing and eventually eradicating dependence on non-renewable energy sources. This steadfast commitment to sustainable development is geared toward the continual enhancement of our global urban milieu, ensuring a healthier and more prosperous environment for forthcoming generations. This transformative vision has been meticulously shaped by an extensive research framework, incorporating in-depth field studies and investigations conducted at both neighborhood and city levels. Our holistic strategy extends its purview to encompass major cities and states, advocating for the realization of exceptional development firmly rooted in the principles of sustainable intelligence. At its core, this approach places a paramount emphasis on stringent pollution control measures, concurrently safeguarding ecological equilibrium and regional cohesion. Central to the realization of this vision is the widespread adoption of environmentally friendly materials and components, championing the cultivation of plant life and harmonious green spaces, and the seamless integration of intelligent lighting and irrigation systems. These systems, including solar panels and solar energy utilization, are deployed wherever feasible, effectively meeting the essential lighting and irrigation needs of these dynamic urban ecosystems. Overall, the transformation of urban areas into smart cities necessitates a holistic and innovative approach to urban development. By actively embracing sustainable intelligence and adhering to strict environmental standards, these cities pave the way for a brighter and more sustainable future, one that is marked by resilient, thriving, and eco-conscious urban communities.

Keywords: smart city, green urban, sustainability, urban management

Procedia PDF Downloads 72
6201 Conflict and Hunger Revisit: Evidences from Global Surveys, 1989-2020

Authors: Manasse Elusma, Thung-Hong Lin, Chun-yin Lee

Abstract:

The relationship between hunger and war or conflict remains to be discussed. Do wars or conflicts cause hunger and food scarcity, or is the reverse relationship is true? As the world becomes more peaceful and wealthier, some countries are still suffered from hunger and food shortage. So, eradicating hunger calls for a more comprehensive understanding of the relationship between conflict and hunger. Several studies are carried out to detect the importance of conflict or war on food security. Most of these studies, however, perform only descriptive analysis and largely use food security indicators instead of the global hunger index. Few studies have employed cross-country panel data to explicitly analyze the association between conflict and chronic hunger, including hidden hunger. Herein, this study addresses this issue and the knowledge gap. We combine global datasets to build a new panel dataset including 143 countries from 1989 to 2020. This study examines the effect of conflict on hunger with fixed effect models, and the results show that the increase of conflict frequency deteriorates hunger. Peacebuilding efforts and war prevention initiative are required to eradicate global hunger.

Keywords: armed conflict, food scarcity, hidden hunger, hunger, malnutrition

Procedia PDF Downloads 172
6200 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 301
6199 Transcultural Study on Social Intelligence

Authors: Martha Serrano-Arias, Martha Frías-Armenta

Abstract:

Significant results have been found both supporting universality of emotion recognition and cultural background influence. Thus, the aim of this research was to test a Mexican version of the MTSI in different cultures to find differences in their performance. The MTSI-Mx assesses through a scenario approach were subjects must evaluate real persons. Two target persons were used for the construction, a man (FS) and a woman (AD). The items were grouped in four variables: Picture, Video, and FS and AD scenarios. The test was applied to 201 students from Mexico and Germany. T-test for picture and FS scenario show no significance. Video and AD had a significance at the 5% level. Results show slight differences between cultures, although a more comprehensive research is needed to conclude which culture can perform better in this kind of assessments.

Keywords: emotion recognition, MTSI, social intelligence, transcultural study

Procedia PDF Downloads 325
6198 Vocational Education: A Synergy for Skills Acquisition and Global Learning in Colleges of Education in Ogun State, Nigeria

Authors: Raimi, Kehinde Olawuyi, Omoare Ayodeji Motunrayo

Abstract:

In the last two decades, there has been rising youth unemployment, restiveness, and social vices in Nigeria. The relevance of Vocational Education for skills acquisition, global learning, and national development to address these problems cannot be underestimated. Thus, the need to economically empower Nigerian youths to be able to develop the nation and meet up in the ever-changing global learning and economy led to the assessment of Vocational Education as Synergy for the Skills Acquisition and Global Learning in Ogun State, Nigeria. One hundred and twenty out of 1,500 students were randomly selected for this study. Data were obtained through a questionnaire and were analyzed with descriptive statistics and Chi-square. The results of the study showed that 59.2% of the respondents were between 20 – 24 years of age, 60.8% were male, and 65.8% had a keen interest in Vocational Education. Also, 90% of the respondents acquired skills in extension/advisory, 78.3% acquired skills in poultry production, and 69.1% acquired skills in fisheries/aquaculture. The major constraints to Vocational Education are inadequate resource personnel (χ² = 10.25, p = 0.02), inadequate training facilities (x̅ = 2.46) and unstable power supply (x̅ = 2.38). Results of Chi-square showed significance association between constraints and Skills Acquisition (χ² = 12.54, p = 0.00) at p < 0.05 level of significance. It was established that Vocational Education significantly contributed to students’ skills acquisition and global learning. This study, therefore, recommends that inadequate personnel should be looked into by the school authority in order not to over-stretch the available staff of the institution while the provision of alternative stable power supply (solar power) is also essential for effective teaching and learning process.

Keywords: vocational education, skills acquisition, national development, global learning

Procedia PDF Downloads 128
6197 Technology, Music Education, and Social-Emotional Learning in Latin America

Authors: Jinan Laurentia Woo

Abstract:

This paper explores the intersection of technology, music education, and social-emotional learning (SEL) with a focus on Latin America. It delves into the impact of music education on social-emotional skills development, highlighting the universal significance of music across various life stages. The integration of artificial intelligence (AI) in music education is discussed, emphasizing its potential to enhance learning experiences. The paper also examines the implementation of SEL strategies in Latin American public schools, emphasizing the importance of fostering social-emotional well-being in educational settings. Challenges such as unequal access to technology and education in the region are addressed, calling for further research and investment in tech-assisted music education.

Keywords: music education, social emotional learning, educational technology, Latin America, artificial intelligence, music

Procedia PDF Downloads 58
6196 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 200
6195 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 163
6194 Artificial Intelligence in College Admissions: Perspectives, Adoption Factors, and Future Directions Based on Existing Literature

Authors: Xiaojiao Duan, Zhaoxia Yi, Maria Assumpta Komugabe, Munirpallam A. Venkataramanan

Abstract:

This study explores stakeholders' perceptions and use of AI in university admissions using a conceptual model. The model suggests that AI expertise mediates the relationship between various factors (positions, experience, perceived benefits, concerns) and the desire to adopt AI. By reviewing existing research, the study identifies variables, correlations, and research gaps. The findings highlight the influence of institutional positions, AI expertise, knowledge, perceived advantages, and concerns on attitudes and intentions toward AI implementation. The review provides a framework for future research, emphasizes ethical AI use, and offers practical insights for admissions stakeholders.

Keywords: artificial intelligence, college admissions, ethical considerations, technology adoption, perceptions of AI

Procedia PDF Downloads 57
6193 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 397
6192 Artificial Intelligence: Reimagining Education

Authors: Silvia Zanazzi

Abstract:

Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.

Keywords: education, artificial intelligence, teaching, learning

Procedia PDF Downloads 20
6191 Validation of Global Ratings in Clinical Performance Assessment

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study aimed to determine the reliability of clinical performance assessments, having been emphasized by ability-based education, and professors overall assessment methods. We addressed the following problems: First, we try to find out whether there is a difference in what we consider to be the main variables affecting the clinical performance test according to the evaluator’s working period and the number of evaluation experience. Second, we examined the relationship among the global rating score (G), analytic global rating score (Gc), and the sum of the analytical checklists (C). What are the main factors affecting clinical performance assessments in relation to the numbers of times the evaluator had administered evaluations and the length of their working period service? What is the relationship between overall assessment score and analytic checklist score? How does analytic global rating with 6 components in OSCE and 4 components in sub-domains (Gc) CPX: aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude overall assessment score and task-specific analytic checklist score sum (C) affect the professor’s overall global rating assessment score (G)? We studied 75 professors who attended a 2016 Bugyeoung Consortium clinical skills performances test evaluating third and fourth year medical students at the Pusan National University Medical school in South Korea (39 prof. in OSCE, 36 prof. in CPX; all consented to participate in our study). Each evaluator used 3 forms; a task-specific analytic checklist, subsequent analytic global rating scale with sub-6 domains, and overall global scale. After the evaluation, the professors responded to the questionnaire on the important factors of clinical performance assessment. The data were analyzed by frequency analysis, correlation analysis, and hierarchical regression analysis using SPSS 21.0. Their understanding of overall assessment was analyzed by dividing the subjects into groups based on experiences. As a result, they considered ‘precision’ most important in overall OSCE assessment, and ‘precise accuracy physical examination’, ‘systemic approaches to taking patient history’, and ‘diagnostic skill capability’ in overall CPX assessment. For OSCE, there was no clear difference of opinion about the main factors, but there was for CPX. Analytic global rating scale score, overall rating scale score, and analytic checklist score had meaningful mutual correlations. According to the regression analysis results, task-specific checklist score sum had the greatest effect on overall global rating. professors regarded task-specific analytic checklist total score sum as best reflecting overall OSCE test score, followed by aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude on a subsequent analytic global rating scale. For CPX, subsequent analytic global rating scale score, overall global rating scale score, and task-specific checklist score had meaningful mutual correlations. These findings support explanations for validity of professors’ global rating in clinical performance assessment.

Keywords: global rating, clinical performance assessment, medical education, analytic checklist

Procedia PDF Downloads 235
6190 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 63
6189 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning

Authors: Chandan Hegde, K. Ashwini

Abstract:

Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.

Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning

Procedia PDF Downloads 187
6188 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 118
6187 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
6186 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 412
6185 Impact of International Student Mobility on European and Global Identity: A Case Study of Switzerland

Authors: Karina Oborune

Abstract:

International student mobility involves a unique spatio-temporal context and exploring the various aspects of mobile students’ experience can lead to new findings within identity studies. The previous studies have mainly focused on student mobility within Europe and its impact on European identity arguing that students who participate in intra-European mobility already feel European before exchange. Contrary to previous studies, in this paper student mobility is analyzed from different point of view. In order to see whether a true Europeanization of identities is taking place, it is necessary to contrast European identity with alternative supranational identity which could similarly result from student mobility and in particular a global identity. Besides, in the paper there is explored whether geographical constellation (host country continental location during mobility- Europe vs. outside of Europe) plays a role. Based on newly developed model of multicultural, social and socio-demographic variables there is argued that after intra-European mobility only global identity of students could be increased (H1), but the mobility to countries outside of Europe causes changes in European identity (H2). The quantitative study (survey, n=1440, 22 higher education institutions, experimental group of former and future/potential mobile students and control group of non-mobile students) was held in Switzerland where is equally high number of students who participate in intra-European and outside of Europe mobility. The results of multivariate linear regression showed that students who participate in exchange in Europe increase their European identity due to having close friends from Europe, as well as due to length of the mobility experience had impact, but students who participate in exchange outside of Europe increase their global identity due to having close friends from outside of Europe and proficiency in foreign languages.

Keywords: student mobility, European identity, global identity, global identity

Procedia PDF Downloads 730
6184 Heterogeneous Reactions to Digital Opportunities: A Field Study

Authors: Bangaly Kaba

Abstract:

In the global information society, the importance of the Internet cannot be overemphasized. Africa needs access to the powerful information and communication tools of the Internet in order to obtain the resources and efficiency essential for sustainable development. Unfortunately, in 2013, the data from Internetworldstats showed only 15% of African populations have access to Internet. This relative low Internet penetration rate signals a problem that may threaten the economic development, governmental efficiency, and ultimately the global competitiveness of African countries. Many initiatives were undertaken to bring the benefits of the global information revolution to the people of Africa, through connection to the Internet and other Global Information Infrastructure technologies. The purpose is to understand differences between socio-economically advantaged and disadvantaged internet users. From that, we will determine what prevents disadvantaged groups from benefiting from Internet usage. Data were collected through a survey from Internet users in Ivory Coast. The results reveal that Personal network exposure, Self-efficacy and Availability are the key drivers of continued use intention for the socio-economically disadvantaged group. The theoretical and practical implications are also described.

Keywords: digital inequality, internet, integrative model, socio-economically advantaged and disadvantaged, use continuance, Africa

Procedia PDF Downloads 469
6183 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 421
6182 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 44
6181 The State in Africa and the twenty-First Century Global Economic Relations

Authors: Sunday Ofum Ogon

Abstract:

The 1648 Westphalia Conference in Europe ushered in the state as the only legal entity with powers to engage in interstate relations on matters that bothers on the development need of her citizens. This epochal entry of the state reshaped global relations with the curtailment of the powers of individual and groups in external relations as the state became the only entity that acted on behalf of any individual or non-state actors like NGOs residing within the parameters of such a country. Thus, the paper interrogated the extent at which the state determines her Politico-Economic relations with regards to development and growth within the state. To achieve these objectives, the paper relied on documentary evidences wherein the qualitative descriptive method was used for data collection and analysis. The paper exploited the facilities of the Rentier State theory as a guide to the study. It was revealed at the end of the study that the 21st century global economic relations is largely determine by international organizations as exemplified by the World Bank and the International Monitory Fund (IMF) where their activities in the continent has undermined state sovereignty. Hence the paper recommended amongst others that states should look inward for development strategies rather than relying on handout from supra-national organizations which has infringe on their sovereignty.

Keywords: State , Global , Rentier state, Twenty-First Century

Procedia PDF Downloads 273
6180 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 149
6179 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application

Authors: Jurijs Salijevs, Katrina Bolocko

Abstract:

The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.

Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare

Procedia PDF Downloads 103
6178 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
6177 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
6176 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 42
6175 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 89
6174 Re-Imagining and De-Constructing the Global Security Architecture

Authors: Smita Singh

Abstract:

The paper develops a critical framework to the hegemonic discourses resorted to by the dominant powers in the global security architecture. Within this framework, security is viewed as a discourse through which identities and threats are represented and produced to legitimize the security concerns of few at the cost of others. International security have long been driven and dominated by power relations. Since the end of the Cold War, the global transformations have triggered contestations to the idea of security at both theoretical and practical level. These widening and deepening of the concept of security have challenged the existing power hierarchies at the theoretical level but not altered the substance and actors defining it. When discourses are introduced into security studies, several critical questions erupt: how has power shaped security policies of the globe through language? How does one understand the meanings and impact of those discourses? Who decides the agenda, rules, players and outliers of the security? Language as a symbolic system and form of power is fluid and not fixed. Over the years the dominant Western powers, led by the United States of America have employed various discursive practices such as humanitarian intervention, responsibility to protect, non proliferation, human rights, war on terror and so on to reorient the constitution of identities and interests and hence the policies that need to be adopted for its actualization. These power relations are illustrated in this paper through the narratives used in the nonproliferation regime. The hierarchical security dynamics is a manifestation of the global power relations driven by many factors including discourses.

Keywords: hegemonic discourse, global security, non-proliferation regime, power politics

Procedia PDF Downloads 318
6173 The Effects of Physiological Stress on Global and Regional Repolarisation in the Human Heart in Vivo

Authors: May Khei Hu, Kevin Leong, Fu Siong Ng, Nicholas Peter

Abstract:

Introduction: Sympathetic stimulation has been recognised as a potent stimulus of arrhythmogenesis in various cardiac pathologies, possibly by augmenting dispersion of repolarisation. The effects of sympathetic stimulation in healthy subjects however remain unclear. It is, therefore, crucial to first establish the effects of physiological stress on dispersion of repolarisation in healthy subjects before understanding these effects in pathological cardiac conditions. We hypothesised that activation-recovery interval (ARI; which is a surrogate of action potential duration) and dispersion of repolarisation decrease on sympathetic stimulation. Methods: Eight patients aged 18-55 years with structurally normal hearts underwent head-up tilt test (HUTT) and exercise tolerance test (ETT) while wearing the electrocardiographic imaging (ECGi) vest. Patients later underwent CT scan and the epicardial potentials are reconstructed using the ECGi software. Activation and recovery times were determined from the acquired electrograms. ARI was calculated and later corrected using Bazett’s formula. Global and regional dispersion of repolarisation were determined from standard deviation of the corrected ARI (ARIc). One-way analysis of variance (ANOVA) and Wilcoxon test were used to evaluate statistical significance. Results: Global ARIc increased significantly [p<0.01] when patients were tilted upwards but decreased significantly after five minutes [p<0.01]. A subsequent post- hoc analysis revealed that the decrease in R-R was more substantial compared to the change in ARI, resulting in the observed increase in ARIc. Global ARIc decreased on peak exercise [p<0.01] but increased on recovery [p<0.01]. Global dispersion increased significantly on peak exercise [p<0.05] although there were no significant changes in regional dispersion. There were no significant changes in both global and regional dispersion during tilt. Conclusion: ARIc decreases upon sympathetic stimulation in healthy subjects. Global dispersion of repolarisation increases upon exercise although there were no changes in global or regional dispersion during orthostatic stress.

Keywords: dispersion of repolarisation, sympathetic stimulation, Head-up tilt test (HUTT), Exercise tolerance test (ETT), Electrocardiographic imaging (ECGi)

Procedia PDF Downloads 197