Search results for: double extreme ranked set sampling
4842 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System
Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang
Abstract:
Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS
Procedia PDF Downloads 1424841 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation
Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna
Abstract:
Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades
Procedia PDF Downloads 2294840 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 914839 Fatty Acid Structure and Composition Effects of Biodiesel on Its Oxidative Stability
Authors: Gelu Varghese, Khizer Saeed
Abstract:
Biodiesel is as a mixture of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats. Recent studies in the literature suggest that end property of biodiesel such as its oxidative stability (OS) is highly influenced by the structure and composition of its alkyl esters than by environmental conditions. The structure and composition of these long chain fatty acid components have been also associated with trends in Cetane number, heat of combustion, cold flow properties viscosity, and lubricity. In the present work, detailed investigation has been carried out to decouple and correlate the fatty acid structure indices of biodiesel such as degree of unsaturation, chain length, double bond orientation, and composition with its oxidative stability. Measurements were taken using the EN14214 established Rancimat oxidative stability test method (EN141120). Firstly, effects of the degree of unsaturation, chain length and bond orientation were tested for the pure fatty acids to establish their oxidative stability. Results for pure Fatty acid show that Saturated FAs are more stable than unsaturated ones to oxidation; superior oxidative stability can be achieved by blending biodiesel fuels with relatively high in saturated fatty acid contents. A lower oxidative stability is noticed when a greater quantity of double bonds is present in the methyl ester. A strong inverse relationship with the number of double bonds and the Rancimat IP values can be identified. Trans isomer Methyl elaidate shows superior stability to oxidation than its cis isomer methyl oleate (7.2 vs. 2.3). Secondly, the effects of the variation in the composition of the biodiesel were investigated and established. Finally, biodiesels with varying structure and composition were investigated and correlated.Keywords: biodiesel, fame, oxidative stability, fatty acid structure, acid composition
Procedia PDF Downloads 2864838 The Impact of the Economic Crisis in the European Identity
Authors: Sofía Luna, Carla González Salamanca
Abstract:
The 2008 economic crisis had huge implications in Europe. In this continent, the repercussions of the crisis were not only economic but also political and institutional. The economic stress has generated changes in the perception of the citizens, their attitude and the confidence placed in the political organizations. The lost of confidence is not only present in the debtor countries but it is also present in the European economic powers like Germany and France. This research explains how the economic crisis had an impact in the identity, population’s attitude and how this generated the rise of extreme right parties. In addition, it defines the different types of attitudes and support that exist towards these political and economic institutions. The results of this investigation show that the depression beside of its economic implications, it caused institutional, social and political difficulties for the Union. Moreover, the support and attitudes of the population were severely strained because the confidence in the political organization decreased. Furthermore, a rise in the otherness sentiment was shown. In other words, the distinction between “us” and “them” increased causing repercussions in the collective European identity. Additionally, there was a spread in national identities that caused the rise of the extreme right wing parties. In conclusion, the 2008 economic crisis caused not only economic stress but also it generated a political, social and institutional crisis in Europe.Keywords: Europe, identity, economic crisis, otherness sentiment
Procedia PDF Downloads 4984837 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment
Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas
Abstract:
Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation
Procedia PDF Downloads 1464836 Entrepreneurs’ Perceptions of the Economic, Social and Physical Impacts of Tourism
Authors: Oktay Emir
Abstract:
The objective of this study is to determine how entrepreneurs perceive the economic, social and physical impacts of tourism. The study was conducted in the city of Afyonkarahisar, Turkey, which is rich in thermal tourism resources and investments. A survey was used as the data collection method, and the questionnaire was applied to 472 entrepreneurs. A simple random sampling method was used to identify the sample. Independent sampling t-tests and ANOVA tests were used to analyse the data obtained. Additionally, some statistically significant differences (p<0.05) were found based on the participants’ demographic characteristics regarding their opinions about the social, economic and physical impacts of tourism activities.Keywords: tourism, perception, entrepreneurship, entrepreneurs, structural equation modelling
Procedia PDF Downloads 4524835 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment
Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi
Abstract:
Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness
Procedia PDF Downloads 5114834 Revealing the Feature of Mind Wandering on People with High Creativity and High Mental Health through Experience Sampling Method
Authors: A. Yamaoka, S. Yukawa
Abstract:
Mind wandering is a mental phenomenon of drifting away from a current task or external environment toward inner thought. This research examines the feature of mind wandering which people who have high creativity and high mental health engage in because it is expected that mind wandering which such kind of people engage in may not induce negative affect, although it can improve creativity. Sixty-seven participants were required to complete questionnaires which measured their creativity and mental health. After that, researchers conducted experience sampling method and measured the details of their mind wandering and the situation when mind wandering was generated in daily life for three days. The result showed that high creative people and high mental health people more think about positive things during mind wandering and less think about negative things. In further research, researchers will examine how to induce positive thought during mind wandering and how to inhibit negative thought during mind wandering. Doing so will contribute to improve creative problem solving without generation of negative affect.Keywords: creativity, experience sampling method, mental health, mind wandering
Procedia PDF Downloads 1744833 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 1634832 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1384831 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production
Procedia PDF Downloads 1674830 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application
Authors: M. Kaouane, A. Boukhelifa, A. Cheriti
Abstract:
In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer
Procedia PDF Downloads 9064829 The Transport of Radical Species to Single and Double Strand Breaks in the Liver’s DNA Molecule by a Hybrid Method of Type Monte Carlo - Diffusion Equation
Abstract:
The therapeutic utility of certain Auger emitters such as iodine-125 depends on their position within the cell nucleus . Or diagnostically, and to maintain as low as possible cell damage, it is preferable to have radionuclide localized outside the cell or at least the core. One solution to this problem is to consider markers capable of conveying anticancer drugs to the tumor site regardless of their location within the human body. The objective of this study is to simulate the impact of a complex such as bleomycin on single and double strand breaks in the DNA molecule. Indeed, this simulation consists of the following transactions: - Construction of BLM -Fe- DNA complex. - Simulation of the electron’s transport from the metastable state excitation of Fe 57 by the Monte Carlo method. - Treatment of chemical reactions in the considered environment by the diffusion equation. For physical, physico-chemical and finally chemical steps, the geometry of the complex is considered as a sphere of 50 nm centered on the binding site , and the mathematical method used is called step by step based on Monte Carlo codes.Keywords: concentration, yield, radical species, bleomycin, excitation, DNA
Procedia PDF Downloads 4574828 The Effects of Sleep Deprivation on Vigilance, Fatigue, and Performance during Simulated Train Driving
Authors: Clara Theresia, Hardianto Iridiastadi
Abstract:
Drowsiness is one of the main factors that contribute to the occurrence of accidents, particularly in the transportation sector. While the effects of sleep deprivation on cognitive functions have been reported, the exact relationships remain a critical issue. This study aimed at quantifying the effects of extreme sleep deprivation on vigilance, fatigue, and performance during simulated train driving. A total of 12 participants were asked to drive a train simulator continuously for 4 hours, either in a sleep deprived condition (2-hr of sleep) or normal (8-hr of sleep) condition. Dependent variables obtained during the task included Psychomotor Vigilance Task (PVT) parameters, degree of fatigue (assessed via Visual Analogue Scale/VAS) and sleepiness (reported using Karolinska Sleepiness Scale/KSS), and driving performance (the number of speed limit violations). Findings from this study demonstrated substantial decrements in vigilance in the sleep-deprived condition. This condition also resulted in 75% increase in speed violation and a two-fold increase in the degree of fatigue and sleepiness. Extreme sleep deprivation was clearly associated with substantially poorer response. The exact effects, however, were dependent upon the types of responses.Keywords: cognitive function, psychomotor vigilance task, sleep deprivation, train simulator
Procedia PDF Downloads 1864827 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity
Procedia PDF Downloads 4924826 The Magnification of Early Detect Nutrition Case through Local Potential Utilization in Urban Region, Indonesia
Authors: Oktia Woro Kasmini Handayani, Sri Ratna Rahayu, Efa Nugroho, Bertakalswa Hermawati
Abstract:
The double burden of nutrition problem must be faced by Indonesia as developing country. The implemented program did not improve the nutritional status, therefore need to consider to utilize local potential. The objective of this research was to find out the effectivity of magnification model of early detect through local potential utilization in urban region, Semarang, Central Java, Indonesia. The research used an experimental design with the quantitative-qualitative approach. The population was all toddlers under five within the research region, sample determination by purposive sampling, as many as 216 toddlers. Quantitative data analysis used effectively criteria by Sugiono. Qualitative data was analyzed using NVivo. The optimization of local potential in the effort of nutrition status improvement shows number of nutrition case found was increased 225% (very effective), number of cases treated was increased 175% (very effective), number of cases counselled was increased 200% (effective), and number of cases that have improvement increase 75% (effective). The local potential need to be utilized in the effort of nutrition program improvement one of it is through the community empowerment, particularly health care and health high education institution as partner.Keywords: early detection, nutrition status, local potential, health cadre
Procedia PDF Downloads 2764825 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor
Authors: Tian-Fang Kang, Xue Sun
Abstract:
DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.Keywords: DNA damage, detection, electrochemiluminescence, sensor
Procedia PDF Downloads 4104824 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles
Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster
Abstract:
Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.Keywords: clay, enzyme, polyelectrolyte, formulation
Procedia PDF Downloads 2684823 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities
Authors: Veljko Jeremic, Milica Kostic Stankovic, Aleksandar Markovic, Milan Martic
Abstract:
Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States, the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.Keywords: evaluating efficiency, distance based analysis, ranking of universities, ARWU
Procedia PDF Downloads 2964822 Epstein, Barr Virus Alters ATM-Dependent DNA Damage Responses in Germinal Centre B-Cells during Early Infection
Authors: Esther N. Maina, Anna Skowronska, Sridhar Chaganti, Malcolm A. Taylor, Paul G. Murray, Tatjana Stankovic
Abstract:
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of human tumours of B-cell origin. The demonstration that a proportion of Hodgkin lymphomas and all Burkitt’s lymphomas harbour EBV suggests that the virus contributes to the development of these malignancies. However, the mechanisms of lymphomagenesis remain largely unknown. To determine whether EBV causes DNA damage and alters DNA damage response in cells of EBV-driven lymphoma origin, Germinal Centre (GC) B cells were infected with EBV and DNA damage responses to gamma ionising radiation (IR) assessed at early time points (12hr – 72hr) after infection and prior to establishment of lymphoblastoid (LCL) cell lines. In the presence of EBV, we observed induction of spontaneous DNA DSBs and downregulation of ATM-dependent phosphorylation in response to IR. This downregulation coincided with reduced ability of infected cells to repair IR-induced DNA double-strand breaks, as measured by the kinetics of gamma H2AX, a marker of double-strand breaks, and by the tail moment of the comet assay. Furthermore, we found that alteration of DNA damage responses coincided with the expression of LMP-1 protein. The presence of the EBV virus did not affect the localization of the ATM-dependent DNA repair proteins to sites of damage but instead lead to an increased expression of PP5, a phosphatase that regulates ATM function. The impact of the virus on DNA repair was most prominent 24h after infection, suggesting that this time point is crucial for the viral establishment in B cells. Our results suggest that during an early infection EBV virus dampens crucial cellular responses to DNA double-strand breaks which facilitate successful viral infection, but at the same time might provide the mechanism for tumor development.Keywords: EBV, ATM, DNA damage, germinal center cells
Procedia PDF Downloads 3514821 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 704820 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process
Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single and double bubbles, electric field, boiling, rising
Procedia PDF Downloads 2264819 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1144818 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes
Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim
Abstract:
Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.Keywords: EBFC, glucose, MWCNT, microfluidic
Procedia PDF Downloads 3264817 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 1534816 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 584815 Identification of Rainfall Trends in Qatar
Authors: Abdullah Al Mamoon, Ataur Rahman
Abstract:
Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar
Procedia PDF Downloads 5644814 Signal Estimation and Closed Loop System Performance in Atrial Fibrillation Monitoring with Communication Channels
Authors: Mohammad Obeidat, Ayman Mansour
Abstract:
In this paper a unique issue rising from feedback control of Atrial Fibrillation monitoring system with embedded communication channels has been investigated. One of the important factors to measure the performance of the feedback control closed loop system is disturbance and noise attenuation factor. It is important that the feedback system can attenuate such disturbances on the atrial fibrillation heart rate signals. Communication channels depend on network traffic conditions and deliver different throughput, implying that the sampling intervals may change. Since signal estimation is updated on the arrival of new data, its dynamics actually change with the sampling interval. Consequently, interaction among sampling, signal estimation, and the controller will introduce new issues in remotely controlled Atrial Fibrillation system. This paper treats a remotely controlled atrial fibrillation system with one communication channel which connects between the heart rate and rhythm measurements to the remote controller. Typical and optimal signal estimation schemes is represented by a signal averaging filter with its time constant derived from the step size of the signal estimation algorithm.Keywords: atrial fibrillation, communication channels, closed loop, estimation
Procedia PDF Downloads 3794813 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 311