Search results for: data exchange
25773 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 19825772 Low-Cost Fog Edge Computing for Smart Power Management and Home Automation
Authors: Belkacem Benadda, Adil Benabdellah, Boutheyna Souna
Abstract:
The Internet of Things (IoT) is an unprecedented creation. Electronics objects are now able to interact, share, respond and adapt to their environment on a much larger basis. Actual spread of these modern means of connectivity and solutions with high data volume exchange are affecting our ways of life. Accommodation is becoming an intelligent living space, not only suited to the people circumstances and desires, but also to systems constraints to make daily life simpler, cheaper, increase possibilities and achieve a higher level of services and luxury. In this paper we are as Internet access, teleworking, consumption monitoring, information search, etc.). This paper addresses the design and integration of a smart home, it also purposes an IoT solution that allows smart power consumption based on measurements from power-grid and deep learning analysis.Keywords: array sensors, IoT, power grid, FPGA, embedded
Procedia PDF Downloads 11625771 The Impact of Environmental Social and Governance (ESG) on Corporate Financial Performance (CFP): Evidence from New Zealand Companies
Authors: Muhammad Akhtaruzzaman
Abstract:
The impact of corporate environmental social and governance (ESG) on financial performance is often difficult to quantify despite the ESG related theories predict that ESG performance improves financial performance of a company. This research examines the link between corporate ESG performance and the financial performance of the NZX (New Zealand Stock Exchange) listed companies. For this purpose, this research utilizes mixed methods approaches to examine and understand this link. While quantitative results found no robust evidence of such a link, however, the qualitative analysis of content data suggests a strong cooccurrence exists between ESG performance and financial performance. The findings of this research have important implications for policymakers to support higher ESG-performing companies and for management practitioners to develop ESG-related strategies.Keywords: ESG, financial performance, New Zealand firms, thematic analysis, mixed methods
Procedia PDF Downloads 6725770 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)
Authors: C. C. Chima, C. J. M. Anumaka
Abstract:
This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.Keywords: earnings per share, environmental disclosures, return on assets, return on equity
Procedia PDF Downloads 8625769 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite
Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson
Abstract:
Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.Keywords: cell migration, hMSCs, SiHA, transwell migration system
Procedia PDF Downloads 13225768 The Impact of Female Characters on a Movie’s Return on Investment
Authors: Raghav Lakhotia, Sameer Ganu, Anshul Goel, Abhishek Kumar
Abstract:
In the age and times where women’s empowerment is a significant topic of discussion, we aim to analyze the potential gender diversity influence on box office revenues. The following research is carried out by collecting data from 400 Hollywood movies between the years 2014-2017 and performing regression analysis to find a correlation between the presence of female characters in movies and their return on investment (ROI). The paper finds that there is a positive relationship between the performance of the movies (its ROI) and the gender diversity i.e. the more the number of female characters, the higher the revenue generated. Another factor such as Number of Votes also has a direct impact on the revenue of the movie. The research not only takes into consideration the mere presence of women on screen but also the exchange of at least one dialogue among themselves, which is presented by the Bechdel Score of the movie.Keywords: Bechdel, diversity, Hollywood, return on investment
Procedia PDF Downloads 20025767 The Impact of Bitcoin on Stock Market Performance
Authors: Oliver Takawira, Thembi Hope
Abstract:
This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.Keywords: bitcoin, stock market, interest rates, ARDL
Procedia PDF Downloads 10725766 First-Principles Study of Xnmg3 (X=P, As, Sb, Bi) Antiperovskite Compounds
Authors: Kadda Amara, Mohammed Elkeurti, Mostefa Zemouli, Yassine Benallou
Abstract:
In this work, we present a study of the structural, elastic and electronic properties of the cubic antiperovskites XNMg3 (X=P, As, Sb and Bi) using the full-potential augmented plane wave plus local orbital (FP-LAPW+lo) within the Generalized Gradient Approximation based on PBEsol, Perdew 2008 functional. We determined the lattice parameters, the bulk modulus B and their pressure derivative B'. In addition, the elastic properties such as elastic constants (C11, C12 and C44), the shear modulus G, the Young modulus E, the Poisson's ratio ν and the B/G ratio are also given. For the band structure, density of states and charge density the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.Keywords: XNMg3 compounds, GGA-PBEsol, TB-mBJ, elastic properties, electronic properties
Procedia PDF Downloads 40925765 Low-Income African-American Fathers' Gendered Relationships with Their Children: A Study Examining the Impact of Child Gender on Father-Child Interactions
Authors: M. Lim Haslip
Abstract:
This quantitative study explores the correlation between child gender and father-child interactions. The author analyzes data from videotaped interactions between African-American fathers and their boy or girl toddler to explain how African-American fathers and toddlers interact with each other and whether these interactions differ by child gender. The purpose of this study is to investigate the research question: 'How, if at all, do fathers’ speech and gestures differ when interacting with their two-year-old sons versus daughters during free play?' The objectives of this study are to describe how child gender impacts African-American fathers’ verbal communication, examine how fathers gesture and speak to their toddler by gender, and to guide interventions for low-income African-American families and their children in early language development. This study involves a sample of 41 low-income African-American fathers and their 24-month-old toddlers. The videotape data will be used to observe 10-minute father-child interactions during free play. This study uses the already transcribed and coded data provided by Dr. Meredith Rowe, who did her study on the impact of African-American fathers’ verbal input on their children’s language development. The Child Language Data Exchange System (CHILDES program), created to study conversational interactions, was used for transcription and coding of the videotape data. The findings focus on the quantity of speech, diversity of speech, complexity of speech, and the quantity of gesture to inform the vocabulary usage, number of spoken words, length of speech, and the number of object pointings observed during father-toddler interactions in a free play setting. This study will help intervention and prevention scientists understand early language development in the African-American population. It will contribute to knowledge of the role of African-American fathers’ interactions on their children’s language development. It will guide interventions for the early language development of African-American children.Keywords: parental engagement, early language development, African-American families, quantity of speech, diversity of speech, complexity of speech and the quantity of gesture
Procedia PDF Downloads 10525764 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher
Abstract:
This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange
Procedia PDF Downloads 35125763 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 37825762 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review
Procedia PDF Downloads 16325761 Impact of Regulation on Trading in Financial Derivatives in Europe
Authors: H. Florianová, J. Nešleha
Abstract:
Financial derivatives are considered to be risky investment instruments which could possibly bring another financial crisis. As prevention, European Union and its member states have released new legal acts adjusting this area of law in recent years. There have been several cases in history of capital markets worldwide where it was shown that legislature may affect behavior of subjects on capital markets. In our paper we analyze main events on selected European stock exchanges in order to apply them on three chosen markets - Czech capital market represented by Prague Stock Exchange, German capital market represented by Deutsche Börse and Polish capital market represented by Warsaw Stock Exchange. We follow time series of development of the sum of listed derivatives on these three stock exchanges in order to evaluate popularity of those exchanges. Afterwards we compare newly listed derivatives in relation to the speed of development of these exchanges. We also make a comparison between trends in derivatives and shares development. We explain how a legal regulation may affect situation on capital markets. If the regulation is too strict, potential investors or traders are not willing to undertake it and move to other markets. On the other hand, if the regulation is too vague, trading scandals occur and the market is not reliable from the prospect of potential investors or issuers. We see that making the regulation stricter usually discourages subjects to stay on the market immediately although making the regulation vaguer to interest more subjects is usually much slower process.Keywords: capital markets, financial derivatives, investors' behavior, regulation
Procedia PDF Downloads 27025760 Linking Work-Family Enrichment and Innovative Workplace Behavior: The Mediating Role of Positive Emotions
Authors: Nidhi Bansal, Upasna Agarwal
Abstract:
Innovation is a key driver for economic growth and well-being of developed as well as emerging economies like India. Very few studies examined the relationship between IWB and work-family enrichment. Therefore, the present study examines the relationship between work-family enrichment (WFE) and innovative workplace behavior (IWB) and whether it is mediated by positive emotions. Social exchange theory and broaden and build theory explain the proposed relationships. Data were collected from 250 full time dual working parents in different Indian organizations through a survey questionnaire. Snowball technique was used for approaching respondents. Mediation analysis was assessed through PROCESS macro (Hayes, 2012) in SPSS. With correlational analysis, it was explored that all three variables were significantly and positively related. Analysis suggests that work-family enrichment is significantly related to innovative workplace behavior and this relationship is partially mediated by positive emotions. A cross-sectional design, use of self-reported questions and data collected only from dual working parents are few limitations of the study. This is one of the few studies to examine the innovative workplace behavior in response to work-family enrichment and first attempt to examine the mediation effect of emotions between these two variables.Keywords: dual working parents, emotions, innovative workplace behavior, work-family enrichment
Procedia PDF Downloads 25825759 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 23125758 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16825757 Potentials and Influencing Factors of Dynamic Pricing in Business: Empirical Insights of European Experts
Authors: Christopher Reichstein, Ralf-Christian Härting, Martina Häußler
Abstract:
With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structural equation modeling approach show five main drivers increasing the potential of dynamic price settings in the E-Commerce. Influencing factors are the knowledge of customers’ individual willingness to pay, rising sales, the possibility of customization, the data volume and the information about competitors’ pricing strategy.Keywords: e-commerce, empirical research, experts, dynamic pricing (DP), influencing factors, potentials
Procedia PDF Downloads 26625756 International Financial Reporting Standard Adoption and Value Relevance of Earnings in Listed Consumer Goods Companies in Nigerian
Authors: Muktar Haruna
Abstract:
This research work examines the International Financial Reporting Standard (IFRS) adoption and value relevance of earnings of listed consumer goods companies in the Nigerian. The population of the study comprises 22 listed consumer goods companies, out of which 15 were selected as sample size of the study. The scope of the study is a 12-year period covering from 2006 to 2018. Secondary data from the annual report of sampled companies were used, which consists of earnings per share (EPS), the book value of equity per share (BVE) as independent variables; firm size (FSZ) as a control variable, and market share price of sampled companies from Nigerian stock exchange as dependent variable. Multiple regressions were used to analyze the data. The results of the study showed that IFRS did not improve the value relevance of earnings after the adoption, which translates to a decrease in value relevance of accounting numbers in the post-adoption period. The major recommendation is that the Nigerian Reporting Council should ensure full compliance to all provisions of IFRS and provide uniformity in the presentation of non-current assets in the statement of financial position, where some present only net current assets leaving individual figures for current assets and liabilities invisible.Keywords: IFRS, adoption, value relevance, earning per share, book value of equity per share
Procedia PDF Downloads 14925755 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 27925754 Identifying the Traditional Color Scheme in Decorative Patterns Used by the Bahnar Ethnic Group in the Central Highlands of Vietnam
Authors: Nguyen Viet Tan
Abstract:
The Bahnar is one of 11 indigenous groups living in the Central Highlands of Vietnam. It is one among the four most popular groups in this area, including the Mnong who speak the same language of Mon Khmer family, while both groups of the Jrai and the Rhade belong to the Malayo-Polynesian language family. These groups once captured fertile plateaus, left their cultural and artistic heritage which affected the remaining small groups. Despite the difference in ethnic origins, these groups seem to share similar beliefs, customs and related folk arts after a very long time living beside each other. However, through an in-depth study, this paper points out the fact that the decorative patterns used by the Bahnar are different from the other ethnic groups, especially in color. Based on historical materials from the local museums and some studies in 1980s when all of the ethnic groups in this area had still lived in self-sufficient condition, this paper characterizes the traditional color scheme used by the Bahnar and identifies the difference in decorative motifs of this group compared to the others by pointing out they do not use green in their usual decorative patterns. Moreover, combined with some field surveys recently, through comparative analysis, it also discovers stylistic variations of these patterns in the process of cultural exchange with the other ethnic groups, both in and out of the region, in modern living conditions. This study helps to preserve and promote the traditional values and cultural identity of the Bahnar people in the Central Highlands of Vietnam, avoiding the fusion of styles among groups during the cultural exchange.Keywords: Bahnar ethnic group, decorative patterns, the central highlands of Vietnam, the traditional color scheme
Procedia PDF Downloads 12525753 Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing
Authors: H. Samadiyeh, R. Khajavi
Abstract:
A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples.Keywords: Finite Difference Method, Graphics Processing Unit (GPU), Message Passing Interface (MPI), Modal, Wave propagation
Procedia PDF Downloads 29725752 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 20625751 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 12925750 Understanding Knowledge Sharing and Its Effect on Creative Performance from a Dyadic Relationship Perspective
Authors: Fan Wei, Tang Yipeng
Abstract:
Knowledge sharing is of great value to organizational performance and innovation ability. However, the mainstream research has focused largely on the impact of knowledge sharing at the team level on individuals and teams. There is a lack of empirical studies on how employees interact in the exchange of knowledge and its effect on employees’ own creative performance. Based on communication accommodation theory and social exchange theory, this article explores the construction of an employee knowledge interaction mechanism under the moderating of social status and introduces the leader's creativity expectation as a moderating variable to explore its cross-level moderating effect on employee knowledge sharing and their own creative performance. An empirical test was conducted on 36 teaching and research teams in the two primary schools, and the results showed that: (1) Explicit/tacit knowledge of employees is positively correlated with acquisition of explicit/tacit knowledge; (2) Colleagues’ evaluations of employees’ social status play a moderating role between the employees’ explicit/tacit knowledge and the acquisition of explicit/tacit knowledge. (3) The leadership creativity expectation positively regulates the relationship between the employees' explicit knowledge acquisition and creative performance. This research helps to open the "black box" of the interpersonal interaction mechanism of knowledge sharing and also provides an important theoretical basis and practical guidance for organizational managers to effectively stimulate employee knowledge sharing and creative performance.Keywords: knowledge sharing, knowledge interaction, social status, leadership creativity expectations, creative performance
Procedia PDF Downloads 12125749 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 5625748 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 55525747 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48525746 The Impact of Reshuffle in Indonesian Working Cabinet Volume II to Abnormal Return and Abnormal Trading Activity of Companies Listed in the Jakarta Islamic Index
Authors: Fatin Fadhilah Hasib, Dewi Nuraini, Nisful Laila, Muhammad Madyan
Abstract:
A big political event such as Cabinet reshuffle mostly can affect the stock price positively or negatively, depend on the perception of each investor and potential investor. This study aims to analyze the movement of the market and trading activities which respect to an event using event study method. This method is used to measure the movement of the stock exchange in which abnormal return can be obtained by investor related to the event. This study examines the differences of reaction on abnormal return and trading volume activity from the companies listed in the Jakarta Islamic Index (JII), before and after the announcement of the Cabinet Work Volume II on 27 July 2016. The study was conducted in observation of 21 days in total which consists of 10 days before the event and 10 days after the event. The method used in this study is event study with market adjusted model method that observes market reaction to the information of an announcement or publicity events. The Results from the study showed that there is no significant negative nor positive reaction at the abnormal return and abnormal trading before and after the announcement of the cabinet reshuffle. It is indicated by the results of statistical tests whose value not exceeds the level of significance. Stock exchange of the JII just reflects from the previous stock prices without reflecting the information regarding to the Cabinet reshuffle event. It can be concluded that the capital market is efficient with a weak form.Keywords: abnormal return, abnormal trading volume activity, event study, political event
Procedia PDF Downloads 29325745 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.Keywords: Fuzzy logic, investment, policy, stock exchange index
Procedia PDF Downloads 23925744 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack
Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su
Abstract:
The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier
Procedia PDF Downloads 307