Search results for: cold spray
684 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 63683 Effect of Steel Slag on Cold Bituminous Emulsion Mix
Authors: Amol Rakhunde, Namdeo Hedaoo
Abstract:
Cold bituminous emulsion mixes (CBEM) are preferred due to their low cost for the construction of low volume roads in India. Due to the low strength of CBEM’s, the strength is generally increased by the addition of Ordinary Portland Cement (OPC) and hydrated lime. To improve the performance of CBEM’s, the use of industrial waste material is also an alternative. Steel slag is by product of steel industry which is sustainable construction material. Due to limited modes of practice of utilization steel slag, huge amount of steel slag dumped in yards of each steel industry and engaging of important agricultural land and gave pollution to whole environment. The effective use of steel slag as additives in CBEM’s has ultimate benefits such improvement in strength of CBEM’s, waste disposal steel slag, saving natural aggregate and lowering cost of roadways. Studies carried out in the past have shown a significant improvement in the strength of CBEM’s prepared with the replacement of natural aggregate with industrial waste materials such as fly ash and ground granulated blast furnace slag. In this study, effect of modified mix which is mixes prepared with steel slag compared with the control mix and the mixes prepared with OPC. Experimental work was carried out on the sample of control mix, OPC mix, and modified mix. For modified mix, aggregate was replaced with steel slag by 10%, 20%, 30% and 40% of weight of aggregate of same size as of steel slag in aggregate gradation. For OPC mix, filler was replaced by 1%, 2% and 3% of weight of total aggregate with OPC. Optimum emulsion content of each mix obtained by using Marshall stability test and comparison of stability values were carried out. Marshall stability, indirect tensile strength test, and retained stability tests are performed on control mixes, OPC mixes and modified mixes. Significant improvement in Marshall stability retained stability and indirect tensile strength of modified mix compared to control mix and OPC mix.Keywords: CBEM, indirect tensile strength test, Marshall stability test, OPC, optimum emulsion content, retained stability test, steel slag
Procedia PDF Downloads 155682 Experimental Study of Upsetting and Die Forging with Controlled Impact
Authors: T. Penchev, D. Karastoyanov
Abstract:
The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process.Keywords: rocket engine, forging hammer, sticking impact, plastic deformation
Procedia PDF Downloads 371681 Characterisation and in vitro Corrosion Resistance of Plasma Sprayed Hydroxyapatite and Hydroxyapatite: Silicon Oxide Coatings on 316L SS
Authors: Gurpreet Singh, Hazoor Singh, Buta Singh Sidhu
Abstract:
In the current investigation plasma spray technique was used for depositing hydroxyapatite (HA) and HA – silicon oxide (SiO2) coatings on 316L SS substrate. In HA-SiO2 coating, 20 wt% SiO2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The corrosion resistance of the uncoated, HA coated and HA + 20 wt% SiO2 coated 316L SS was investigated by electrochemical corrosion testing in simulated human body fluid (Ringer’s solution). The influence of SiO2 (20 wt%) on corrosion resistance was determined. After the corrosion testing, the samples were analyzed by XRD and SEM/EDX analyses. The addition of SiO2 reduces the crystallinity of the coating. The corrosion resistance of the 316L SS was found to increase after the deposition of the HA + 20 wt% SiO2 and HA coatings.Keywords: HA, SiO2, corrosion, Ringer’s solution, 316L SS
Procedia PDF Downloads 419680 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.Keywords: flux, free impinging jet, solid-surface, uniform wall temperature
Procedia PDF Downloads 478679 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 265678 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation
Authors: Medhanie Gebremedhin Gebru, Alex Schechter
Abstract:
Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation
Procedia PDF Downloads 144677 Investigation of Linezolid, 127I-Linezolid and 131I-Linezolid Effects on Slime Layer of Staphylococcus with Nuclear Methods
Authors: Hasan Demiroğlu, Uğur Avcıbaşı, Serhan Sakarya, Perihan Ünak
Abstract:
Implanted devices are progressively practiced in innovative medicine to relieve pain or improve a compromised function. Implant-associated infections represent an emerging complication, caused by organisms which adhere to the implant surface and grow embedded in a protective extracellular polymeric matrix, known as a biofilm. In addition, the microorganisms within biofilms enter a stationary growth phase and become phenotypically resistant to most antimicrobials, frequently causing treatment failure. In such cases, surgical removal of the implant is often required, causing high morbidity and substantial healthcare costs. Staphylococcus aureus is the most common pathogen causing implant-associated infections. Successful treatment of these infections includes early surgical intervention and antimicrobial treatment with bactericidal drugs that also act on the surface-adhering microorganisms. Linezolid is a promising anti-microbial with ant-staphylococcal activity, used for the treatment of MRSA infections. Linezolid is a synthetic antimicrobial and member of oxazolidinoni group, with a bacteriostatic or bactericidal dose-dependent antimicrobial mechanism against gram-positive bacteria. Intensive use of antibiotics, have emerged multi-resistant organisms over the years and major problems have begun to be experienced in the treatment of infections occurred with them. While new drugs have been developed worldwide, on the other hand infections formed with microorganisms which gained resistance against these drugs were reported and the scale of the problem increases gradually. Scientific studies about the production of bacterial biofilm increased in recent years. For this purpose, we investigated the activity of Lin, Lin radiolabeled with 131I (131I-Lin) and cold iodinated Lin (127I-Lin) against clinical strains of Staphylococcus aureus DSM 4910 in biofilm. In the first stage, radio and cold labeling studies were performed. Quality-control studies of Lin and iodo (radio and cold) Lin derivatives were carried out by using TLC (Thin Layer Radiochromatography) and HPLC (High Pressure Liquid Chromatography). In this context, it was found that the binding yield was obtained to be about 86±2 % for 131I-Lin. The minimal inhibitory concentration (MIC) of Lin, 127I-Lin and 131I-Lin for Staphylococcus aureus DSM 4910 strain were found to be 1µg/mL. In time-kill studies of Lin, 127I-Lin and 131I-Lin were producing ≥ 3 log10 decreases in viable counts (cfu/ml) within 6 h at 2 and 4 fold of MIC respectively. No viable bacteria were observed within the 24 h of the experiments. Biofilm eradication of S. aureus started with 64 µg/mL of Lin, 127I-Lin and 131I-Lin, and OD630 was 0.507±0.0.092, 0.589±0.058 and 0.266±0.047, respectively. The media control of biofilm producing Staphylococcus was 1.675±0,01 (OD630). 131I and 127I did not have any effects on biofilms. Lin and 127I-Lin were found less effectively than 131I-Lin at killing cells in biofilm and biofilm eradication. Our results demonstrate that the 131I-Lin have potent anti-biofilm activity against S. aureus compare to Lin, 127I-Lin and media control. This is suggested that, 131I may have harmful effect on biofilm structure.Keywords: iodine-131, linezolid, radiolabeling, slime layer, Staphylococcus
Procedia PDF Downloads 558676 Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand
Authors: Paiboon Jeamponk, Tikamporn Thipsaeng
Abstract:
This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction.Keywords: awareness, behavior, pesticide, farmers
Procedia PDF Downloads 428675 In-Situ Synthesis of Zinc-Containing MCM-41 and Investigation of Its Capacity for Removal of Hydrogen Sulfide from Crude Oil
Authors: Nastaran Hazrati, Ali Akbar Miran Beigi, Majid Abdouss, Amir Vahid
Abstract:
Hydrogen sulfide is the most toxic gas of crude oil. Adsorption is an energy-efficient process used to remove undesirable compounds such as H2S in gas or liquid streams by passing the stream through a media bed composed of an adsorbent. In this study, H2S of Iran crude oil was separated via cold stripping then zinc incorporated MCM-41 was synthesized via an in-situ method. ZnO functionalized mesoporous silica samples were characterized by XRD, N2 adsorption and TEM. The obtained results of adsorption of H2S showed superior ability of all the materials and with an increase in ZnO amount adsorption was increased.Keywords: MCM-41, ZnO, H2S removal, adsorption
Procedia PDF Downloads 467674 Thermal Spraying of Titanium-Based Alloys on Steel and Aluminum Substrates
Authors: Ionut Claudiu Roata, Catalin Croitoru
Abstract:
Thermal spraying emerges as a versatile and robust technique for enhancing construction steel with protective coatings tailored for anti-corrosion, insulation, and aesthetics. This study showcases the successful application of flame thermal sprayed titanium-based coatings on EN-S273JR steel substrates and on aluminum. Optimizing the process at a 150 mm spray distance and employing argon as a carrier gas, we achieved coatings with characteristic morphologies and a minimal amount of oxides presence at particle boundaries. Corrosion tests in 3.5% wt. NaCl solution confirmed the coatings’ superior performance, displaying an improved corrosion resistance increase over uncoated steel or aluminum. These results underscore the efficacy of thermal spraying in significantly bolstering the durability of construction steel and aluminum, marking it as a pivotal technique for multifunctional coating applications.Keywords: thermal spraying, corrosion resistance, surface properties, mechanical properties
Procedia PDF Downloads 22673 Data-Driven Crop Advisory – A Use Case on Grapes
Authors: Shailaja Grover, Purvi Tiwari, Vigneshwaran S. R., U. Dinesh Kumar
Abstract:
In India, grapes are one of the most important horticulture crops. Grapes are most vulnerable to downy mildew, which is one of the most devasting diseases. In the absence of a precise weather-based advisory system, farmers spray pesticides on their crops extensively. There are two main challenges associated with using these pesticides. Firstly, most of these sprays were panic sprays, which could have been avoided. Second, farmers use more expensive "Preventive and Eradicate" chemicals than "Systemic, Curative and Anti-sporulate" chemicals. When these chemicals are used indiscriminately, they can enter the fruit and cause health problems such as cancer. This paper utilizes decision trees and predictive modeling techniques to provide grape farmers with customized advice on grape disease management. This model is expected to reduce the overall use of chemicals by approximately 50% and the cost by around 70%. Most of the grapes produced will have relatively low residue levels of pesticides, i.e., below the permissible level.Keywords: analytics in agriculture, downy mildew, weather based advisory, decision tree, predictive modelling
Procedia PDF Downloads 74672 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover
Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan
Abstract:
Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover
Procedia PDF Downloads 149671 Geographic Mapping of Tourism in Rural Areas: A Case Study of Cumbria, United Kingdom
Authors: Emma Pope, Demos Parapanos
Abstract:
Rural tourism has become more obvious and prevalent, with tourists’ increasingly seeking authentic experiences. This movement accelerated post-Covid, putting destinations in danger of reaching levels of saturation called ‘overtourism’. Whereas the phenomenon of overtourism has been frequently discussed in the urban context by academics and practitioners over recent years, it has hardly been referred to in the context of rural tourism, where perhaps it is even more difficult to manage. Rural tourism was historically considered small-scale, marked by its traditional character and by having little impact on nature and rural society. The increasing number of rural areas experiencing overtourism, however, demonstrates the need for new approaches, especially as the impacts and enablers of overtourism are context specific. Cumbria, with approximately 47 million visitors each year, and 23,000 operational enterprises, is one of these rural areas experiencing overtourism in the UK. Using the county of Cumbria as an example, this paper aims to explore better planning and management in rural destinations by clustering the area into rural and ‘urban-rural’ tourism zones. To achieve the aim, this study uses secondary data from a variety of sources to identify variables relating to visitor economy development and demand. These data include census data relating to population and employment, tourism industry-specific data including tourism revenue, visitor activities, and accommodation stock, and big data sources such as Trip Advisor and All Trails. The combination of these data sources provides a breadth of tourism-related variables. The subsequent analysis of this data draws upon various validated models. For example, tourism and hospitality employment density, territorial tourism pressure, and accommodation density. In addition to these statistical calculations, other data are utilized to further understand the context of these zones, for example, tourist services, attractions, and activities. The data was imported into ARCGIS where the density of the different variables is visualized on maps. This study aims to provide an understanding of the geographical context of visitor economy development and tourist behavior in rural areas. The findings contribute to an understanding of the spatial dynamics of tourism within the region of Cumbria through the creation of thematized maps. Different zones of tourism industry clusters are identified, which include elements relating to attractions, enterprises, infrastructure, tourism employment and economic impact. These maps visualize hot and cold spots relating to a variety of tourism contexts. It is believed that the strategy used to provide a visual overview of tourism development and demand in Cumbria could provide a strategic tool for rural areas to better plan marketing opportunities and avoid overtourism. These findings can inform future sustainability policy and destination management strategies within the areas through an understanding of the processes behind the emergence of both hot and cold spots. It may mean that attract and disperse needs to be reviewed in terms of a strategic option. In other words, to use sector or zonal policies for the individual hot or cold areas with transitional zones dependent upon local economic, social and environmental factors.Keywords: overtourism, rural tourism, sustainable tourism, tourism planning, tourism zones
Procedia PDF Downloads 74670 The Association between Saharran Dust and Emergency Department Admission and Hospitalization in Gaziantep, Turkey
Authors: Behcet Al, Mustafa Bogan, Mehmet Murat Oktay, Suat Zengin, Hasan Bayram
Abstract:
Objective: In the last two decades there is a strong scientific interest regarding the role of aerosols for the Earth’s climate and associated changes. Aerosol particles are very important to the Earth-atmosphere climate system playing a crucial role in cloud and precipitation processes, air quality and climate. Here, we evaluated the association between saharran dust and emergency department admission, hospitalization, and mortality. Method: The records of admission to emergency department of Gaziantep University and the dust stroms of 31 months were studied. Patients admitted to ED at dust strom with chronic obstructive lung disease (COLD), asthma bronchiale (AB), serebrovascular events (SVE), acute myocardial infarction (AMI), stabile and unstabile angina pectoris (SAAP andUSAP); and the days with and without dust stroms were included. The study was realized from March 2010 to October 2012. The admission of three days before strom (group 1), during strom days (group 2) and three days after strom (group 3) were determined. The mean level of dust PM10 particulate was calculated, and the results were compared. Results: 5864 patients with chronic obstructive lung disease, asthma bronchiale, serebrovascular events, acute myocardial infarction, stabile and unstabile angyina pectoris admitted during the days with and without dust stroms. 28 dust stroms ocurred during 31 months. The totaliy of stroms continiued 78 days. Of admissions, 35.5% (n=2075) were in group1, 29.8% (n=1746) in group 2, and 34.8% (n=2043) were in group 3. The mean of PM10 for groups (group 1, 2 and 3) were 78.53 mg/m3 (range 19–276) particulate, 108.7 mg/m3 (range 34–631) particulate, and 60.9 mg/m3 (range 17–160) particulate respectively. The mean admission per a day for groups were 24.86, 22.55, and 24.50 respectively. The mortality was 12 in group 1, 12 in group 2, and 17 in grou 3. The hospitalization ratio for groups were 0.24, 0.27, and 0.27 respectively. Conclusion: However, the mean level of PM10 particulate for groups 2 (in dust strom days) is significantly higher (p=0.001) than the days before (group 1) and after (group 3) dust stroms, the mean admissions/day, hostilalization and mortality related to deseases (COLD, AB, SVE, AMI, SAAP andUSA) for group 2 is lower than the group 1 and group 3.Keywords: Saharran dust, PM10 particulate, emergency department admission, mortality
Procedia PDF Downloads 396669 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 77668 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System
Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee
Abstract:
The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector
Procedia PDF Downloads 267667 China Global Policy through the Shanghai Cooperation Organization
Authors: Enayatollah Yazdani
Abstract:
In the post-Cold War era, the world is facing a new emerging global order with the rise of multiple actors in the international arena. China, as a rising global power, has great leverage in internal relations. In particular, during the last two decades, China has rapidly transformed its economy into a global leader in advanced technologies. As a rising power and as one of the two major founding members of the Shanghai Cooperation Organization (SCO), China has tried to use this regional organization, which has the potential to become an important political and security organization of the major states located in the vast Eurasian landmass, for its “go global” strategy. In fact, for Beijing, the SCO represents a new and unique cooperation model, reflecting its vision of a multipolar world order. China has used the SCO umbrella as a multilateral platform to address external threats posed by non-state actors on its vulnerable western border; to gain a strong economic and political foothold in Central Asia without putting the Sino-Russian strategic partnership at risk; and to enhance its energy security through large-scale infrastructure investment in, and trade with, the Central Asian member states. In other words, the SCO is one of the successful outcomes of Chines foreign policy in the post-Cold War era. The expansion of multilateral ties all over the world by dint of pursuing institutional strategies as SCO identifies China as a more constructive power. SCO became a new model of cooperation that was formed on the remains of collapsed Soviet system and predetermined China's geopolitical role in the region. As the fast developing effective regional mechanism, SCO now has more of an external impact on the international system and forms a new type of interaction for promoting China's grand strategy of 'peaceful rise.' This paper aims to answer this major question: How the Chinese government has manipulated the SCO for its foreign policy and global and regional influence? To answer this question, the main discussion is that with regard to the SCO capabilities and politico-economic potential, this organization has been used by China as a platform to expand influence beyond its borders.Keywords: China, the Shanghai Cooperation Organization (SCO), Central Asia, global policy, foreign policy
Procedia PDF Downloads 65666 Antibacterial Activity of Nisin: Comparison the Role of Free and Encapsulated Nisin to Control Staphylococcus Aureus Inoculated in Minced Beef
Authors: Zh. Ghasemi, S. Nouri Saeedlou, A. Ghasemi, SL. Nasiri, P. Ayremlou, P. Mahasti
Abstract:
The use of nisin is successfully used as antibacterial agent in various food products. Although the conclusions of the previous studies were that nisin is not very effective in meat environments. The reduced antimicrobial efficacy of nisin when applied in food has been frequently observed. The aim of this study is to evaluate the potential of free and encapsulated nisin to inhibit the growth of staphylococcus aureus in minced beef. The minimum inhibitory concentration (MIC) of nisin is determined against S. aureus using the agar dilution method. Nisin is encapsulated by spray drying, and encapsulation efficiency, mass yield and total solids content values are 47.79%, 61%, and 96.41 respectively. The study in vitro release kinetics shows highest release of nisin from zein capsules is obtained after 72 hour. This work shows that an appropriate delivery system is necessary to obtain desirable effect of nisin in meat and meat product.Keywords: nisin, encapsulation, Staphylococcus aureus, minced beef, antibacterial activity
Procedia PDF Downloads 291665 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls
Authors: M. Bolacali
Abstract:
The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.Keywords: anti-GnRF, fattening, growth, immunocastration
Procedia PDF Downloads 192664 In vitro Bioacessibility of Phenolic Compounds from Fruit Spray Dried and Lyophilized Powder
Authors: Carolina Beres, Laurine Da Silva, Danielle Pereira, Ana Ribeiro, Renata Tonon, Caroline Mellinger-Silva, Karina Dos Santos, Flavia Gomes, Lourdes Cabral
Abstract:
The health benefits of bioactive compounds such as phenolics are well known. The main source of these compounds are fruits and derivates. This study had the objective to study the bioacessibility of phenolic compounds from grape pomace and juçara dried extracts. For this purpose both characterized extracts were submitted to a simulated human digestion and the total phenolic content, total anthocyanins and antioxidant scavenging capacity was determinate in digestive fractions (oral, gastric, intestinal and colonic). Juçara had a higher anthocianins bioacessibility (17.16%) when compared to grape pomace (2.08%). The opposite result was found for total phenolic compound, where the higher bioacessibility was for grape (400%). The phenolic compound increase indicates a more accessible compound in the human gut. The lyophilized process had a beneficial impact in the final accessibility of the phenolic compounds being a more promising technique.Keywords: bioacessibility, phenolic compounds, grape, juçara
Procedia PDF Downloads 213663 Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System
Authors: Osarobo Omorogieva Ighodaro, Josephus Otejere
Abstract:
This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated.Keywords: inlet fogging, off design, combined cycle, modelling
Procedia PDF Downloads 39662 An Investigation of Water Atomizer in Ejected Gas of a Vehicle Engine
Authors: Chun-Wei Liu, Feng-Tsai Weng
Abstract:
People faced pollution threaten in modern age although the standard of exhaust gas of vehicles has been established. The goal of this study is to investigate the effect of water atomizer in a vehicle emission system. Diluted 20% ammonia water was used in spraying system. Micro particles produced by exhausted gas from engine of vehicle which were cumulated through atomized spray in a self-development collector. In experiments, a self-designed atomization model plate and a gas tank controlled by the micro-processor using Pulse Width Modulation (PWM) logic was prepared for exhaust test. The gas from gasoline-engine of vehicle was purified with the model panel collector. A soft well named ANSYS was utilized for analyzing the distribution condition of rejected gas. Micro substance and percentage of CO, HC, CO2, NOx in exhausted gas were investigated at different engine speed, and atomizer vibration frequency. Exceptional results in the vehicle engine emissions measurement were obtained. The temperature of exhausted gas can be decreased 3oC. Micro substances PM10 can be decreased and the percentage of CO can be decreased more than 55% at 2500RPM by proposed system. Value of CO, HC, CO2 and NOX was all decreased when atomizers were used with water.Keywords: atomizer, CO, HC, NOx, PM2.5
Procedia PDF Downloads 454661 Adsorption Cooling Using Hybrid Energy Resources
Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux
Abstract:
HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources
Procedia PDF Downloads 360660 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character
Authors: Nihit Madireddi, P. A. Mahanwar
Abstract:
We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.Keywords: FAS, nano-silica, PU clear coat, self-cleaning
Procedia PDF Downloads 311659 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection
Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt
Abstract:
Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor
Procedia PDF Downloads 153658 The Use of Solar Energy for Cold Production
Authors: Nadia Allouache, Mohamed Belmedani
Abstract:
—It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia.Keywords: adsorption, adsorbent-adsorbate pair, finned reactor, numerical modeling, solar energy
Procedia PDF Downloads 18657 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 206656 Influence of Fluorine Concentration and Sintering Temperature on the Bioactivity of Apatite-Wollastonite Glass-Ceramics
Authors: Andualem Belachew Workie
Abstract:
In a spray pyrolysis process, apatite-Wollastonite glass-ceramics (AW GC) were fabricated with the composition 8.29MgO_50.09-x CaO_34.46SiO2_7.16P2O5_xCaF₂, where x = 0, 0.54, and 5.24 (wt. %). Based on the results, it appears that the CaF2 addition lowers the glass transition temperature (Tg) and crystallization temperature (Tc) of the glasscomposition. In addition, AW GC's bioactivity increases as the soaking time in simulated body fluid (SBF) increases. Adding CaF₂ and varying sintering temperatures altered the density and linear shrinkage percentage of the samples. The formation of fluorapatite with needle-like microstructure and the formation of the wollastonite phase was enhanced with higher CaF2 content, while the growth of the whitlockite phase took place at a higher heat treatment temperature. Adding high CaF₂ content with high sintering temperatures to apatite Wollastonite glass-ceramic composition facilitates the formation of fluorapatite, which is crucial for denture glass-ceramics.Keywords: apatite-wollastonite glass ceramics, bioactivity, hydroxyapatite, calcium fluoride
Procedia PDF Downloads 96655 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid
Authors: Avdhesh K. Sharma
Abstract:
Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger
Procedia PDF Downloads 211