Search results for: anticancer agent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1761

Search results for: anticancer agent

1281 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 223
1280 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 442
1279 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method

Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay

Abstract:

This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.

Keywords: agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition

Procedia PDF Downloads 247
1278 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach

Authors: Jared Beard, Ali Baheri

Abstract:

As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.

Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification

Procedia PDF Downloads 146
1277 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 77
1276 Study of the Protective Effects of Summer Savory against Multiple Organ Damage Induced by Lead Acetate in Rats

Authors: Bassant M. M. Ibrahim, Doha H. Abou Baker, Ahmed Abd Elghafour

Abstract:

Excessive exposure to heavy metals contributes to the occurrence of deleterious health problems that affect vital organs like the brain, liver, kidneys, and heart. The use of natural products that have antioxidant capabilities may contribute to the protection of these organs. In the present study, the essential oil of summer savory (Satureja hortensis) was used to evaluate its protective effects against lead acetate induced damaging effect on rats’ vital organs, due to its high contents of carvacrol, y-terpinene, and p-cymene. Forty female Wister Albino rats were classified into five equal groups, the 1st served as normal group, the 2nd served as positive control group was given lead acetate (60 mg/kg) intra-peritoneal (IP), the third to fifth groups were treated with calcium disodium (EDTA) as chelating agent and summer savory essential oil in doses of (50 and 100mg/kg) respectively. All treatments were given IP concomitant with lead acetate for ten successive days. At the end of the experiment duration electrocardiogram (ECG), an open field test for the evaluation of psychological state, rotarod test as for the evaluation of locomotor coordination ability as well as anti-inflammatory and oxidative stress biomarkers in serum and histopathology of vital organs were performed. The investigations in this study show that the protective effect of high dose of summer savory essential oil is more than the low dose and that the essential oil of summer savory is a promising agent that can contribute to the protection of vital organs against the hazardous damaging effects of lead acetate.

Keywords: brain, heart, kidneys, lead acetate, liver, protective, summer savory

Procedia PDF Downloads 113
1275 Osmotic Dehydration of Fruit Slices in Concentrated Sugar Solution

Authors: Neda Amidi Fazli, Farid Amidi Fazli

Abstract:

Enriched fruits by minerals provide minerals which are needed to human body the minerals are used by body cells for daily activities. This paper indicates the result of mass transfer in fruit slices in 55% sucrose syrup in presence of calcium and phosphorus ions. Osmosis agent 55% (w/w) was prepared by solving sucrose in deionized water and adding calcium or phosphorus in 1 and 2% concentration. Dry matter, solid gain, water loss as well as weight reduction were calculated. Results showed that by increasing of calcium concentration in osmosis solution solid gain, water loss and weight reduction were increased in short experiment time in kiwi fruit but the parameters decreased in long experiment time by concentration increasing and rise of calcium concentration caused decrease of osmosis parameters in banana. In the case of phosphorus, increasing of ion concentration had adverse effect on all treatments, this may be due to different osmosis force that is created by two types of ions. The mentioned parameters decreased in all treatments by increasing of ion concentration. Highest mass transfer in kiwi fruit occurs when 1% calcium solution applied for 60 minutes, values obtained for solid gain, water loss and weight reduction were 42.60, 51.97, and 9.37 respectively. In the case of banana, when 2% phosphorus concentration was applied as osmosis agent for 60 minutes highest values for solid gain, water loss and weight reduction obtained as 21, 25.84, and 4.84 respectively.

Keywords: calcium, concentration, osmotic dehydration, phosphorus

Procedia PDF Downloads 264
1274 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water

Authors: Morteza Keshavarz

Abstract:

In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.

Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)

Procedia PDF Downloads 350
1273 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes

Authors: S. N. Harun, H. Ahmad

Abstract:

A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.

Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer

Procedia PDF Downloads 291
1272 Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway

Authors: Shweta Sinha, Mukesh Doble, Manju S. L.

Abstract:

Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX.

Keywords: inflammation, inhibition, 5-lipoxygenase, pyrazole

Procedia PDF Downloads 232
1271 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 306
1270 Phase Changing Dicationic Polymeric Ionic Liquid with CO2 Capture Abilities

Authors: Swati Sundararajan, Asit B. Samui, Prashant S. Kulkarni

Abstract:

Polymeric ionic liquids combine the properties of ionic liquids and polymers into a single material which has gained massive interest in the recent years. These ionic liquids offer several advantages such as high phase change enthalpy, wide temperature range, chemical and thermal stability, non-volatility and the ability to make them task-specific. Separation of CO2 is an area of critical importance due to the concerns over greenhouse gasses leading to global warming. Thermal energy storage materials, also known as phase change materials absorb latent heat during fusion process and release the absorbed energy to the surrounding environment during crystallization. These materials retain this property over a number of cycles and therefore, are useful for bridging the gap between energy requirement and use. In an effort to develop materials, which will help in minimizing the growing energy demand and environmental concerns, a series of dicationic poly(ethylene glycol) based polymeric ionic liquids were synthesized. One part of an acrylate of poly(ethylene glycol) was reacted with imidazolium quarternizing agent and the second part was reacted with triazolium quarternizing agent. These two different monomers were then copolymerized to prepare dicationic polymeric ionic liquid. These materials were characterized for solid-liquid phase transition and the enthalpy by using differential scanning calorimetry. The CO2 capture studies were performed on a fabricated setup with varying pressure range from 1-20 atm. The findings regarding the prepared materials, having potential dual applications in the fields of thermal energy storage and CO2 capture, will be discussed in the presentation.

Keywords: CO2 capture, phase change materials, polyethylene glycol, polymeric ionic liquids, thermal energy storage

Procedia PDF Downloads 242
1269 The Ideology of the Jordanian Media Women’s Discourse: Lana Mamkgh as an Example

Authors: Amani Hassan Abu Atieh

Abstract:

This study aims at examining the patterns of ideology reflected in the written discourse of women writers in the media of Jordan; Lana Mamkgh is taken as an example. This study critically analyzes the discursive, linguistic, and cognitive representations that she employs as an agent in the institutionalized discourse of the media. Grounded in van Dijk’s critical discourse analysis approach to Sociocognitive Discourse Studies, the present study builds a multilayer framework that encompasses van Dijk’s triangle: discourse, society, and cognition. Specifically, the study attempts to analyze, at both micro and macro levels, the underlying cognitive processes and structures, mainly ideology and discursive strategies, which are functional in the production of women’s discourse in terms of meaning, forms, and functions. Cognitive processes that social actors adopt are underlined by experience/context and semantic mental models on the one hand and social cognition on the other. This study is based on qualitative research and adopts purposive sampling, taking as an example a sample of an opinion article written by Lana Mamkgh in the Arabic Jordanian Daily, Al Rai. Taking her role as an agent in the public sphere, she stresses the National and feminist ideologies, demonstrating the use of assertive, evaluative, and expressive linguistic and rhetorical devices that appeal to the logic, ethics, and emotions of the addressee. Highlighting the agency of Jordanian writers in the media, the study sought to achieve the macro goal of dispensing political and social justice to the underprivileged. Further, the study seeks to prove that the voice of Jordanian women, viewed as underrepresented and invisible in the public arena, has come through clearly.

Keywords: critical discourse analysis, sociocognitive theory, ideology, women discourse, media

Procedia PDF Downloads 96
1268 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term

Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig

Abstract:

Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.

Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust

Procedia PDF Downloads 149
1267 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 67
1266 Molecular Epidemiology of Circulating Adenovirus Types in Acute Conjunctivitis Cases in Chandigarh, North India

Authors: Mini P. Singh, Jagat Ram, Archit Kumar, Tripti Rungta, Jasmine Khurana, Amit Gupta, R. K. Ratho

Abstract:

Introduction: Human adenovirus is the most common agent involved in viral conjunctivitis. The clinical manifestations vary with different serotypes. The identification of the circulating strains followed by phylogenetic analysis can be helpful in understanding the origin and transmission of the disease. The present study aimed to carry out molecular epidemiology of the adenovirus types in the patients with conjunctivitis presenting to the eye centre of a tertiary care hospital in North India. Materials and Methods: The conjunctival swabs were collected from 23 suspected adenoviral conjunctivitis patients between April-August, 2014 and transported in viral transport media. The samples were subjected to nested PCR targeting hexon gene of human adenovirus. The band size of 956bp was eluted and 8 representative positive samples were subjected to sequencing. The sequences were analyzed by using CLUSTALX2.1 and MEGA 5.1 software. Results: The male: female ratio was found to be 3.6:1. The mean age of presenting patients was 43.95 years (+17.2). Approximately 52.1% (12/23) of patients presented with bilateral involvement while 47.8% (11/23) with unilateral involvement of the eye. Human adenovirus DNA could be detected in 65.2% (15/23) of the patients. The phylogenetic analysis revealed presence of serotype 8 in 7 patients and serotype 4 in one patient. The serotype 8 sequences showed 99-100% identity with Tunisian, Indian and Japanese strains. The adenovirus serotype 4 strains had 100% identity with strains from Tunisia, China and USA. Conclusion: Human adenovirus was found be an important etiological agent for conjunctivitis in our set up. The phylogenetic analysis showed that the predominant circulating strains in our epidemic keratoconjunctivitis were serotypes 8 and 4.

Keywords: conjunctivitis, human adenovirus, molecular epidemiology, phylogenetics

Procedia PDF Downloads 268
1265 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 182
1264 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 158
1263 Spectrum and Prevalence of Candida Infection in Diabetic Foot Ulcers

Authors: Seyed Reza Aghili, Tahereh Shokohi, Lotfollah Davoodi, Zahra Kashi, Azam Moslemi, Mahdi Abastabar, Iman Haghani, Sabah Mayahi, Asoudeh A.

Abstract:

Introduction: In diabetic foot ulcers, if fungal agents such as Candida species penetrate into the cutaneous or depth of ulcer, can increase the degree of the wound and cause Candia infection and make it more difficult to heal. Material & Methods: A cross-sectional study was performed on 100 diabetic foot ulcer patients in 2020 in Sari, Iran. patient's data and wound grade were recorded in a questionnaire. Candida infection was diagnosed with direct microscopic examination and culture of samples. Colony-PCR molecular method was used for ITS region of DNA and then PCR-RFLP with Msp1 enzyme and using HWP1 specific gene to determine species of Candida agent. Results: Of 100 patients, the mean age 62.1 ± 10.8 years, 95% type 2 diabetes, 83%>10 years duration diabetes, 59% male, 66%> poor education level, 99% married, 52% rural, 95% neuropathic symptoms, 88% using antibiotics, 69%HbA1C >9%, and mean ulcer degree 2.6±1.05 were. Candida infection was seen in 13% of the deep tissue of the wound and 7% cutaneous around the wound. The predominant Candida isolated was C. parapsilosis (71.5%), C .albicans (14.3%). Fungal infections caused by mold fungi were not detected. There was a statistically significant relationship between yeast infection and gender, rural, HbA1C and ulcer degree. Conclusion: Mycological evaluations often are ignored. Candida parapsilosis is the most common infectious agent in these patients and may require specific treatment. Therefore, more attention of physicians to Candida infections particularly, early diagnosis and effective treatment can help faster recovery and prevent amputation.

Keywords: diabetic foot ulcer, candida infection, risk factors, c. parapsilosis

Procedia PDF Downloads 180
1262 Ocular Delivery of Charged Drugs Using Iontophoresis

Authors: Abraham J. Domb

Abstract:

Nearly every eye disorder and treatment of post operated eyes evolve around ocular drug delivery. Most ocular diseases are treated with repeated topical applications administered as eye drops. Various attempts have been made to improve drug bioavailability by increasing both the retention of the drug in the pre-corneal area and the penetration of the drug through the cornea. However, currently marketed products are associated with vision blurring, irritability, patient discomfort, toxicity, low drug bioavailability, manufacturing difficulties and inadequate aqueous stability. It has been suggested to use iontophoresis for the non-invasive delivery of drugs. The iontophoretic device is composed of a control panel, two electrodes, a cylindrical well for the insertion of a disposable hydrogel, and a disposable hydrogel pellet. The drug-loaded hydrogel is attached to a cylindrical well at the edge of the electrode of the device and placed onto the eye. The device applies a variable electrical current that can vary from 0.1 mA to 1.5 mA for pre-set periods from 10 seconds to 300 seconds. The iontophoretic device developed in the lab was found to be effective in the delivery of the drugs: gentamicin, water-soluble steroids, and various anticancer agents. When testing in rabbits for safety, the device was considered to be non-toxic and effective.

Keywords: iontophoresis, eye disorder, drug delivery, hydrogel

Procedia PDF Downloads 62
1261 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model

Authors: Ichiro Takahashi

Abstract:

One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.

Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability

Procedia PDF Downloads 198
1260 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent

Authors: John T. Leman, James Gibson, Peter J. Bonitatibus

Abstract:

There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.

Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization

Procedia PDF Downloads 10
1259 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell

Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.

Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases

Procedia PDF Downloads 519
1258 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 334
1257 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 260
1256 The Effect of Pregabalin on Postoperative Pain after Anterior Cruciate Ligament Reconstruction: A Systematic Review of Randomized Clinical Trials

Authors: Emad Kouhestani

Abstract:

Background: Despite the enormous success of anterior cruciate ligament (ACL) reconstruction, acute neuropathic pain can develop postoperatively and is both distressing and difficult to treat once established. Pregabalin, as an anticonvulsant agent that selectively affects the nociceptive process, has been used as a pain relief agent. The purpose of this systematic review of randomized controlled trials (RCTs) was to evaluate the pain control effect of pregabalin versus placebo after ACL reconstruction. Method: A search of the literature was performed from inception to June 2022, using PubMed, Scopus, Google Scholar, Web of Science, Cochrane, and EBSCO. Studies considered for inclusion were RCTs that reported relevant outcomes (postoperative pain scores, or cumulative opioid consumption, adverse events) following the administration of pregabalin in patients undergoing ACL reconstruction. Result: Five placebo-controlled RCTs involving 272 participants met the inclusion criteria. 75 mg and 150 mg of oral pregabalin were used in included trials. Two studies used a single dose of pregabalin one hour before anesthesia induction. Two studies used pregabalin 1 hour before anesthesia induction and 12 hours after. One study used daily pregabalin 7 days before and 7 days after surgery. Out of five papers, three papers found significantly lower pain intensity and cumulative opioid consumption in the pregabalin group compared with the placebo group. However, a decrease in pain scores was found in all trials. Pregabalin administration was associated with dizziness and nausea. Conclusion: The use of pregabalin may be a valuable asset in pain management after ACL reconstruction. However, future studies with larger sample sizes and longer follow-up periods are required.

Keywords: pregabalin, anterior cruciate ligament, postoperative pain, clinical trial

Procedia PDF Downloads 73
1255 Therapeutic Challenges in Treatment of Adults Bacterial Meningitis Cases

Authors: Sadie Namani, Lindita Ajazaj, Arjeta Zogaj, Vera Berisha, Bahrije Halili, Luljeta Hasani, Ajete Aliu

Abstract:

Background: The outcome of bacterial meningitis is strongly related to the resistance of bacterial pathogens to the initial antimicrobial therapy. The objective of the study was to analyze the initial antimicrobial therapy, the resistance of meningeal pathogens and the outcome of adults bacterial meningitis cases. Materials/methods: This prospective study enrolled 46 adults older than 16 years of age, treated for bacterial meningitis during the years 2009 and 2010 at the infectious diseases clinic in Prishtinë. Patients are categorized into specific age groups: > 16-26 years of age (10 patients), > 26-60 years of age (25 patients) and > 60 years of age (11 patients). All p-values < 0.05 were considered statistically significant. Data were analyzed using Stata 7.1 and SPSS 13. Results: During the two year study period 46 patients (28 males) were treated for bacterial meningitis. 33 patients (72%) had a confirmed bacterial etiology; 13 meningococci, 11 pneumococci, 7 gram-negative bacilli (Ps. aeruginosa 2, Proteus sp. 2, Acinetobacter sp. 2 and Klebsiella sp. 1 case) and 2 staphylococci isolates were found. Neurological complications developed in 17 patients (37%) and the overall mortality rate was 13% (6 deaths). Neurological complications observed were: cerebral abscess (7/46; 15.2%), cerebral edema (4/46; 8.7%); haemiparesis (3/46; 6.5%); recurrent seizures (2/46; 4.3%), and single cases of thrombosis sinus cavernosus, facial nerve palsy and decerebration (1/46; 2.1%). The most common meningeal pathogens were meningococcus in the youngest age group, gram negative-bacilli in second age group and pneumococcus in eldery age group. Initial single-agent antibiotic therapy (ceftriaxone) was used in 17 patients (37%): in 60% of patients in the youngest age group and in 44% of cases in the second age group. 29 patients (63%) were treated with initial dual-agent antibiotic therapy; ceftriaxone in combination with vancomycin or ampicillin. Ceftriaxone and ampicillin were the most commonly used antibiotics for the initial empirical therapy in adults > 50 years of age. All adults > 60 years of age were treated with the initial dual-agent antibiotic therapy as in this age group was recorded the highest mortality rate (M=27%) and adverse outcome (64%). Resistance of pathogens to antimicrobics was recorded in cases caused by gram-negative bacilli and was associated with greater risk for developing neurological complications (p=0.09). None of the gram-negative bacilli were resistant to carbapenems; all were resistant to ampicillin while 5/7 isolates were resistant to cefalosporins. Resistance of meningococci and pneumococci to beta-lactams was not recorded. There were no statistical differences in the occurrence of neurological complications (p > 0.05), resistance of meningeal pathogens to antimicrobics (p > 0.05) and the inital antimicrobial therapy (one vs. two antibiotics) concerning group-ages in adults. Conclusions: The initial antibiotic therapy with ceftriaxone alone or in combination with vancomycin or ampicillin did not cover cases caused by gram-negative bacilli.

Keywords: adults, bacterial meningitis, outcomes, therapy

Procedia PDF Downloads 161
1254 Hsa-miR-139-5p Acts as a Tumor Suppressor by Targeting C-Met in Non-Small Cell Lung Cancer

Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li

Abstract:

Hsa-miRNA-139-5p (miR-139-5p) has recently been discovered having anticancer efficacy in different organs. However, the role of miR-139-5p on lung cancer is still ambiguous. In this study, we investigated the role of miR-139-5p on development of lung cancer. Results indicated miR-139-5p was significantly down-regulated in primary tumor tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-139-5p in NSCLC cell lines significantly suppressed cell growth through inhibition of cyclin D1 and up-regulation of p57(Kip2). In addition, miR-139-5p induced apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-139-5p inhibited cellular metastasis through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene c-Met was revealed to be a putative target of miR-139-5p, which was inversely correlated with miR-139-5p expression. Taken together, our results demonstrated that miR-139-5p plays a pivotal role in lung cancer through inhibiting cell proliferation, metastasis, and promoting apoptosis by targeting oncogenic c-Met.

Keywords: hsa-miRNA-139-5p (miR-139-5p), c-Met, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 331
1253 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 439
1252 Antimicrobial, Antioxidant and Enzyme Activities of Geosmithia pallida (KU693285): A Fungal Endophyte Associated with Brucea mollis Wall Ex. Kurz, an Endangered and Medicinal Plant of N. E. India

Authors: Deepanwita Deka, Dhruva Kumar Jha

Abstract:

Endophytes are the microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects. Endophytes are rich source of therapeutic substances like antimicrobial, anticancerous, herbicidal, insecticidal, immunomodulatory compounds. Brucea mollis, commonly known as Quinine in Assam, belonging to the family Simaroubaceae, is a shrub or small tree, recorded as endangered species in North East India by CAMP survey in 2003. It is traditionally being used as antimalarial and antimicrobial agent and has antiplasmodial, cytotoxic, anticancer, diuretic, cardiovascular effect etc. Being endangered and medicinal; this plant may host certain noble endophytes which need to be studied in depth. The aim of the present study was isolation and identification of potent endophytic fungi from Brucea mollis, an endangered medicinal plant, to protect it from extinction due to over use for medicinal purposes. Aseptically collected leaves, barks and roots samples of healthy plants were washed and cut into a total of 648 segments of about 2 cm long and 0.5 cm broad with sterile knife, comprising 216 segments each from leaves, barks and roots. These segments were surface sterilized using ethanol, mercuric chloride (HgCl2) and aqueous solution of sodium hypochlorite (NaClO). Different media viz., Czapeck-Dox-Agar (CDA, Himedia), Potato-Dextrose-Agar (PDA, Himedia), Malt Extract Agar (MEA, Himedia), Sabourad Dextrose Agar (SDA, Himedia), V8 juice agar, nutrient agar and water agar media and media amended with plant extracts were used separately for the isolation of the endophytic fungi. A total of 11 fungal species were recovered from leaf, bark and root tissues of B. mollis. The isolates were screened for antimicrobial, antioxidant and enzymatic activities using certain protocols. Cochliobolus geniculatus was identified as the most dominant species. The mycelia sterilia (creamy white) showing highest inhibitory activity against Candida albicans (MTCC 183) was induced to sporulate using modified PDA media. The isolate was identified as Geosmithia pallida. The internal transcribed spacer of rDNA was sequenced for confirmation of the taxonomic identity of the sterile mycelia (creamy white). The internal transcribed spacer r-DNA sequence was submitted to the NCBI (KU693285) for the first time from India. G. pallida and Penicillium showed highest antioxidant activity among all the isolates. The antioxidant activity of G. pallida and Penicillium didn’t show statistically significant difference (P˃0.05). G. pallida, Cochliobolus geniculatus and P. purpurogenum respectively showed highest cellulase, amylase and protease activities. Thus, endopytic fungal isolates may be used as potential natural resource of pharmaceutical importance. The endophytic fungi, Geosmithia pallida, may be used for synthesis of pharmaceutically important natural products and consequently can replace plants hitherto used for the same purpose. This study suggests that endophytes should be investigated more aggressively to better understand the endophyte biology of B. mollis.

Keywords: Antimicrobial activity, antioxidant activity, Brucea mollis, endophytic fungi, enzyme activity, Geosmithia pallida

Procedia PDF Downloads 169