Search results for: HOX genes
451 Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)
Authors: Sarwan Dhir, Suma Basak, Dipika Parajulee
Abstract:
Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9.Keywords: Medicago sativa l. (Alfalfa), agrobacterium tumefaciens, β-glucuronidase, green fluorescent protein, transient gene
Procedia PDF Downloads 11450 Differential Expression Analysis of Busseola fusca Larval Transcriptome in Response to Cry1Ab Toxin Challenge
Authors: Bianca Peterson, Tomasz J. Sańko, Carlos C. Bezuidenhout, Johnnie Van Den Berg
Abstract:
Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stem borer, is a major pest in sub-Saharan Africa. It causes economic damage to maize and sorghum crops and has evolved non-recessive resistance to genetically modified (GM) maize expressing the Cry1Ab insecticidal toxin. Since B. fusca is a non-model organism, very little genomic information is publicly available, and is limited to some cytochrome c oxidase I, cytochrome b, and microsatellite data. The biology of B. fusca is well-described, but still poorly understood. This, in combination with its larval-specific behavior, may pose problems for limiting the spread of current resistant B. fusca populations or preventing resistance evolution in other susceptible populations. As part of on-going research into resistance evolution, B. fusca larvae were collected from Bt and non-Bt maize in South Africa, followed by RNA isolation (15 specimens) and sequencing on the Illumina HiSeq 2500 platform. Quality of reads was assessed with FastQC, after which Trimmomatic was used to trim adapters and remove low quality, short reads. Trinity was used for the de novo assembly, whereas TransRate was used for assembly quality assessment. Transcript identification employed BLAST (BLASTn, BLASTp, and tBLASTx comparisons), for which two libraries (nucleotide and protein) were created from 3.27 million lepidopteran sequences. Several transcripts that have previously been implicated in Cry toxin resistance was identified for B. fusca. These included aminopeptidase N, cadherin, alkaline phosphatase, ATP-binding cassette transporter proteins, and mitogen-activated protein kinase. MEGA7 was used to align these transcripts to reference sequences from Lepidoptera to detect mutations that might potentially be contributing to Cry toxin resistance in this pest. RSEM and Bioconductor were used to perform differential gene expression analysis on groups of B. fusca larvae challenged and unchallenged with the Cry1Ab toxin. Pairwise expression comparisons of transcripts that were at least 16-fold expressed at a false-discovery corrected statistical significance (p) ≤ 0.001 were extracted and visualized in a hierarchically clustered heatmap using R. A total of 329,194 transcripts with an N50 of 1,019 bp were generated from the over 167.5 million high-quality paired-end reads. Furthermore, 110 transcripts were over 10 kbp long, of which the largest one was 29,395 bp. BLAST comparisons resulted in identification of 157,099 (47.72%) transcripts, among which only 3,718 (2.37%) were identified as Cry toxin receptors from lepidopteran insects. According to transcript expression profiles, transcripts were grouped into three subclusters according to the similarity of their expression patterns. Several immune-related transcripts (pathogen recognition receptors, antimicrobial peptides, and inhibitors) were up-regulated in the larvae feeding on Bt maize, indicating an enhanced immune status in response to toxin exposure. Above all, extremely up-regulated arylphorin genes suggest that enhanced epithelial healing is one of the resistance mechanisms employed by B. fusca larvae against the Cry1Ab toxin. This study is the first to provide a resource base and some insights into a potential mechanism of Cry1Ab toxin resistance in B. fusca. Transcriptomic data generated in this study allows identification of genes that can be targeted by biotechnological improvements of GM crops.Keywords: epithelial healing, Lepidoptera, resistance, transcriptome
Procedia PDF Downloads 203449 A Single Cell Omics Experiments as Tool for Benchmarking Bioinformatics Oncology Data Analysis Tools
Authors: Maddalena Arigoni, Maria Luisa Ratto, Raffaele A. Calogero, Luca Alessandri
Abstract:
The presence of tumor heterogeneity, where distinct cancer cells exhibit diverse morphological and phenotypic profiles, including gene expression, metabolism, and proliferation, poses challenges for molecular prognostic markers and patient classification for targeted therapies. Understanding the causes and progression of cancer requires research efforts aimed at characterizing heterogeneity, which can be facilitated by evolving single-cell sequencing technologies. However, analyzing single-cell data necessitates computational methods that often lack objective validation. Therefore, the establishment of benchmarking datasets is necessary to provide a controlled environment for validating bioinformatics tools in the field of single-cell oncology. Benchmarking bioinformatics tools for single-cell experiments can be costly due to the high expense involved. Therefore, datasets used for benchmarking are typically sourced from publicly available experiments, which often lack a comprehensive cell annotation. This limitation can affect the accuracy and effectiveness of such experiments as benchmarking tools. To address this issue, we introduce omics benchmark experiments designed to evaluate bioinformatics tools to depict the heterogeneity in single-cell tumor experiments. We conducted single-cell RNA sequencing on six lung cancer tumor cell lines that display resistant clones upon treatment of EGFR mutated tumors and are characterized by driver genes, namely ROS1, ALK, HER2, MET, KRAS, and BRAF. These driver genes are associated with downstream networks controlled by EGFR mutations, such as JAK-STAT, PI3K-AKT-mTOR, and MEK-ERK. The experiment also featured an EGFR-mutated cell line. Using 10XGenomics platform with cellplex technology, we analyzed the seven cell lines together with a pseudo-immunological microenvironment consisting of PBMC cells labeled with the Biolegend TotalSeq™-B Human Universal Cocktail (CITEseq). This technology allowed for independent labeling of each cell line and single-cell analysis of the pooled seven cell lines and the pseudo-microenvironment. The data generated from the aforementioned experiments are available as part of an online tool, which allows users to define cell heterogeneity and generates count tables as an output. The tool provides the cell line derivation for each cell and cell annotations for the pseudo-microenvironment based on CITEseq data by an experienced immunologist. Additionally, we created a range of pseudo-tumor tissues using different ratios of the aforementioned cells embedded in matrigel. These tissues were analyzed using 10XGenomics (FFPE samples) and Curio Bioscience (fresh frozen samples) platforms for spatial transcriptomics, further expanding the scope of our benchmark experiments. The benchmark experiments we conducted provide a unique opportunity to evaluate the performance of bioinformatics tools for detecting and characterizing tumor heterogeneity at the single-cell level. Overall, our experiments provide a controlled and standardized environment for assessing the accuracy and robustness of bioinformatics tools for studying tumor heterogeneity at the single-cell level, which can ultimately lead to more precise and effective cancer diagnosis and treatment.Keywords: single cell omics, benchmark, spatial transcriptomics, CITEseq
Procedia PDF Downloads 117448 The Effects of Circadian Rhythms Change in High Latitudes
Authors: Ekaterina Zvorykina
Abstract:
Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors
Procedia PDF Downloads 156447 Genome-Wide Insights into Whole Gut Microbiota of Rainbow Trout, Oncorhynchus Mykiss Associated with Changes in Dietary Composition and Temperature Regimens
Authors: John N. Idenyi, Hadimundeen Abdallah, Abigeal D. Adeyemi, Jonathan C. Eya
Abstract:
Gut microbiomes play a significant role in the growth, metabolism, and health of fish. However, we know very little about the interactive effects of variations in dietary composition and temperature on rainbow trout gut microbiota. Exactly 288 rainbow trout weighing 45.6g ± 0.05 (average ± SD) were fed four isocaloric, isolipidic, and isonitrogenous diets comprising 40% crude protein and 20% crude lipid and formulated as 100 % animal-based protein (AP) and a blend of 50 fish oil (FO)/50 camelina oil (CO), 100 % AP and100 % CO, 100 % plant-based protein (PP) and a blend of 50FO/50CO or 100 % PP and 100 % CO in 14 or 18°C for 150 days. Gut content was analyzed using 16S rRNA gene and shotgun sequencing. The most abundant phyla identified regardless of diet were Tenericutes, Firmicutes, Proteobacteria, Spirochaetes, Bacteroidetes, and Actinobacteria, while Aeromonadaceae and Enterobacteriaceae were dominant families in 18°C. Moreover, gut microbes were dominated by genes relating to an amino acid, carbohydrate, fat, and energy metabolisms and influenced by temperature. The shared functional profiles for all the diets suggest that plant protein sources in combination with CO could be as good as the fish meal with 50/50 FO & CO in rainbow trout farming.Keywords: aquafeed, aquaculture, microbiome, rainbow trout
Procedia PDF Downloads 92446 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 372445 Polymorphism in Myostatin Gene and Its Association with Growth Traits in Kurdi Sheep of Northern Khorasan
Authors: Masoud Alipanah, Sekineh Akbari, Gholamreza Dashab
Abstract:
Myostatin genes or factor 8 affecting on growth and making differentiation works (GDF8) as a moderator in the development of skeletal muscle inhibitor. If mutations occurs in the coding region of myostatin, alter its inhibitory role and the muscle growth is increased. In this study, blood samples were collected randomly from 60 Kurdish sheep in northern Khorasan and DNA extraction was performed using a modified salt. A fragment 337 bp from exon 3 myostatin gene and-specific primers by using a polymerase chain reaction (PCR) were amplified. In order to detect different forms of an allele at this locus HaeΙΙΙ restriction enzymes and PCR-RFLP analysis were used. Band patterns clarification was performed using agarose gel electrophoresis. The frequency of genotypes mm, Mm, and MM, were respectively detected, 0, 0.15 and 0.85. The allele frequency for alleles m and M, were respectively, 0.07 and 0.93. The statistical analyses indicated that m allele was significantly associated with body weight. The results of this study suggest that the Myostatin gene possibly is a candidate gene that affects growth traits in Kurdish sheep.Keywords: GDF8 gene, Kurdi Sheep of Northern Khorasan, polymorphism, weight traits
Procedia PDF Downloads 340444 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 415443 Identification and Characterization of Nuclear Envelope Protein Interactions
Authors: Mohammed Hakim Jafferali, Balaje Vijayaraghavan, Ricardo A. Figueroa, Ellinor Crafoord, Veronica J. Larsson, Einar Hallberg, Santhosh Gudise
Abstract:
The nuclear envelope which surrounds the chromatin of eukaryotic cells contains more than a hundred transmembrane proteins. Mutations in some genes encoding nuclear envelope proteins give rise to human diseases including neurological disorders. The function of many nuclear envelope proteins is not well established. This is partly because nuclear envelope proteins and their interactions are difficult to study due to the inherent resistance to extraction of nuclear envelope proteins. We have developed a novel method called MCLIP, to identify interacting partners of nuclear envelope proteins in live cells. Using MCLIP, we found three new binding partners of the inner nuclear membrane protein Samp1: the intermediate filament protein Lamin B1, the LINC complex protein Sun1 and the G-protein Ran. Furthermore, using in vitro studies, we show that Samp1 binds both Emerin and Ran directly. We have also studied the interaction between Samp1 and Ran in detail. The results show that the Samp1 binds stronger to RanGTP than RanGDP. Samp1 is the first transmembrane protein known to bind Ran and it is tempting to speculate that Samp1 may provide local binding sites for RanGTP at membranes.Keywords: MCLIP, nuclear envelope, ran, Samp1
Procedia PDF Downloads 353442 Efficient Sampling of Probabilistic Program for Biological Systems
Authors: Keerthi S. Shetty, Annappa Basava
Abstract:
In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.Keywords: systems biology, probabilistic model, inference, biology, model
Procedia PDF Downloads 349441 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis
Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan
Abstract:
Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus
Procedia PDF Downloads 153440 Impact of Nitrogenous Wastewater and Seawater Acidification on Algae
Authors: Pei Luen Jiang
Abstract:
Oysters (Ostreidae) and hard clams (Meretrix lusoria) are important shallow sea-cultured shellfish in Taiwan, and are mainly farmed in Changhua, Yunlin, Chiayi and Tainan. As these shellfish are fed primarily on natural plankton, the artificial feed is not required, leading to high economic value in aquatic farming. However, in recent years, though mariculture production areas have expanded steadily, large-scale deaths of farmed shellfish have also become increasingly common due to climate change and human factors. Through studies over the past few years, our research team has determined the impact of nitrogen deprivation on growth and morphological variations in algae and sea anemones (Actiniaria) and identified the target genes affected by adverse environmental factors. In mariculture, high-density farming is commonly adopted, which results in elevated concentrations of nitrogenous waste in the water. In addition, excessive carbon dioxide from the atmosphere also dissolves in seawater, causing a steady decrease in the pH of seawater, leading to acidification. This study to observe the impact of high concentrations of nitrogen sources and carbon dioxide on algae.Keywords: algae, shellfish, nitrogen, acidification
Procedia PDF Downloads 179439 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape
Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca
Abstract:
ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)
Procedia PDF Downloads 110438 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process
Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink
Abstract:
The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, PolandKeywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway
Procedia PDF Downloads 419437 The Soviet Union-Style of Urban Planning in China: Historical Review and Enlightenment from the Output Mode of Contemporary Cooperative Parks
Authors: Yifeng Shi, Xingping Wang
Abstract:
The Soviet Union-style of urban planning has produced a broad and profound influence on China’s urban planning system. The study on extendibility and development experience of Soviet planning in China helps to change the current embarrassing situation 'one-hand planning practice, second-hand planning theory', and also beneficial to facilitate the establishment of China's domestic urban planning theory from the planning source, especially the overseas cooperation parks rich in 'Chinese characteristics'. In practice, as the world’s major infrastructure country, China is exporting to the world especially countries along 'the Belt and Road' a development model featuring cooperation parks as Chinese characteristics. This is of great significance to evaluate and summarize the experiences of Soviet Union-style of planning for China's development objectively and rationally, from removing ideological factors and extracting positive factors to carry them forward in overseas cooperation parks. This article briefly reviews the Soviet influence on urban planning after the founding of China and divided the influences stages into 'guidance, internalization and absorption, selective learning, decline' four periods. The impact includes production-oriented planning and planning concepts continue to be implemented, the establishment of the regional planning, master planning, detailed planning of the basic framework of urban planning, and homogenized cellular structure of the space, as well as planning techniques, professional training, planning techniques and so on. China and even most socialist countries now still carry such planning genes. At present, in the process of implementing 'the Belt and Road' strategy, the planning and construction of China’s overseas cooperation parks generally encounter many problems as lack of strategic planning and systematic planning, lack of top-level design, uncoordinated planning and layout in parks, and redundant construction in some areas. After sublating the planning genes of the Soviet Union-style of urban planning for the development of the socialist countries, especially the industrial planning system, this paper puts forward some views as follows to realize the overseas output and development of China's planning model and technology. Firstly the future development of overseas cooperation park should be from a rational planning point of view. Secondly the government should not only rigidly and equitably allocate the resources of the parks but also closely integrate the national economic plans or economic development strategies. Lastly management department should frame the threshold of development rationally, give full play to the pragmatic planning style in accordance with the local land system and planning system. It has an important guiding and reference role for the development of China's overseas cooperation park under the 'go global' strategy, after objectively evaluating the impact of the Soviet Union-style urban planning and absorbing the beneficial components on China. However, we should also recognize that the cooperation parks and the urban industrial system behind it are only part of urban development. More attention should be payed on the design of the local and the general rules of urban development to take the lead effect of cooperation parks suitable. Foundation item: Under the auspices of the Specific Plan for Strategic International Cooperation in Scientific and Technological Innovation, the National Key Research and Development Plan 'Research Cooperation and Exemplary Application in Planning of Development of Overseas Industrial Parks' (No 2016YFE0201000).Keywords: China cooperative parks, history of urban planning, output mode, The Soviet Union
Procedia PDF Downloads 247436 Association of Selected Polymorphisms of BER Pathway with the Risk of Colorectal Cancer in the Polish Population
Authors: Jacek Kabzinski, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Ireneusz Majsterek
Abstract:
The incidence of colorectal cancer (CRC) is increasing from year to year. Despite intensive research CRC etiology remains unknown. Studies suggest that at the basis of the process of carcinogenesis can lie reduced efficiency of DNA repair mechanisms, often caused by polymorphisms in DNA repair genes. The aim of the study was to determine the relationship between gene polymorphisms Pro242Arg of PolB gene and Arg780His of Lig3 gene and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 780Arg/His of Lig3 gene is associated with an increased risk of colorectal cancer. On the basis of these results, we conclude that Lig3 gene polymorphism Arg780His may be associated with an increased risk of colorectal cancer.Keywords: BER, colorectal cancer, PolB, Lig3, polymorphisms
Procedia PDF Downloads 454435 Effects of Obesity and Family History of Diabetes on the Association of Cholesterol Ester Transfer Protein Gene with High-Density Lipoprotein Cholesterol Levels in Korean Population
Authors: Jae Woong Sull
Abstract:
Lipid levels are related to the risk of cardiovascular diseases. Cholesterol ester transfer protein (CETP) gene is one of the candidate genes of cardiovascular diseases. A total of 2,304 persons were chosen from a Hospital (N=4,294) in South Korea. Female subjects with the CG/GG genotype had a 2.03 -fold (p=0.0001) higher risk of having abnormal HDL cholesterol levels (<40 mg/dL) than subjects with the CC genotype. Male subjects with the CG/GG genotype had a 1.34 -fold (p=0.0019) higher risk than subjects with the CC genotype. When analyzed by body mass index, the association with CETP was much stronger in male subjects with BMI>=25.69 (OR=1.55, 95% CI: 1.15-2.07, P=0.0037) than in male lean subjects. When analyzed by family history of diabetes, the association with CETP was much stronger in male subjects with positive family history of low physical activity (OR=4.82, 95% CI: 1.86-12.5, P=0.0012) than in male subjects with negative family history of diabetes. This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.Keywords: CETP, diabetes, obesity, polymorphisms
Procedia PDF Downloads 143434 Goblet cells and Mucin Related Gene Expression in Mice Infected with Eimeria papillata
Authors: Mohamed A. Dkhil, Denis Delic, Saleh Al-Quraishy
Abstract:
Coccidiosis causes considerable economic loss in the poultry industry. The current study aimed to investigate the response of goblet cells as well as the induced tissue damage during Eimeria papilata infection. Mice were infected with sporulated E. papillata oocyts. On day 5 post-infection, the fecal output was determined. Also, the jejunum was prepared for the histological, histochemical and molecular studies. Our results revealed that the intestinal coccidian infection with E. papillata induced a marked goblet cell hypoplasia and depleted mucus secretion. Also, the infection was able to alter the jejuna architecture and increased the apoptotic cells inside the villi. In addition, the real time PCR results indicated that, the inflammatory cytokines TNF-α, iNOS, IFN-y and IL-1β were significantly up-regulated. In contrast, the mRNA expression patterns of IL-6 in response to E. papillata infection did not differ significantly between control and infected mice. Moreover, the mRNA expression of TLR4 was significantly up-regulated, whereas the expression of MUC2 is significantly down-regulated upon infection. Further studies are required to understand the regulatory mechanisms of goblet cells related genes.Keywords: goblet cells, Eimeria papillata, mice, jejunum
Procedia PDF Downloads 275433 Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence
Authors: Mohammadjavad Sotoudeheian, Soroush Nematollahi
Abstract:
Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells.Keywords: immune system, Crohn’s Disease, BATF, T helper cells, Bcl, interleukin, FOSL
Procedia PDF Downloads 145432 A CD40 Variant is Associated with Systemic Bone Loss Among Patients with Rheumatoid Arthritis
Authors: Rim Sghiri, Samia Al Shouli, Hana Benhassine, Nejla Elamri, Zahid Shakoor, Foued Slama, Adel Almogren, Hala Zeglaoui, Elyes Bouajina, Ramzi Zemni
Abstract:
Objectives: Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and a variant of CD40 gene, which is known to play a critical role in both immune response and bone homeostasis among patients with RA. Methods: CD40 rs48104850 was genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). Results: Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR=0.31, 95% CI= 0.16-0.59, p=3.84 x 10₋₄). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788± 0.136 versus 0.826± 0.146g/cm², p=0.001). Conclusion: This study, for the first time ever, demonstrated an association between a CD40 genetic variant and SBL among patients with RA.Keywords: rheumatoid arthritis, CD40 gene, bone mineral density, systemic bone loss, rs48104850
Procedia PDF Downloads 460431 Investigating Associations Between Genes Linked to Social Behavior and Early Covid-19 Spread Using Multivariate Linear Regression Analysis
Authors: Gwenyth C. Eichfeld
Abstract:
Variation in global COVID-19 spread is partly explained by social and behavioral factors. Many of these behaviors are linked to genetics. The short polymorphism of the 5-HTTLPR promoter region of the SLC6A4 gene is linked to collectivism. The seven-repeat polymorphism of the DRD4 gene is linked to risk-taking, migration, sensation-seeking, and impulsivity. Fewer CAG repeats in the androgen receptor gene are linked to impulsivity. This study investigates an association between the country-level frequency of these variants and early Covid-19 spread. Results of regression analysis indicate a significant association between increased country-wide prevalence of the short allele of the SLC6A4 gene and decreased COVID-19 spread when other factors that have been linked to COVID-19 are controlled for. Additionally, results show that the short allele of the SLC6A4 gene is associated with COVID-19 spread through GDP and percent urbanization rather than collectivism. Results showed no significant association between the frequency of the DRD4 polymorphism nor the androgen receptor polymorphism with early COVID-19 spread.Keywords: neuroscience, genetics, population sciences, Covid-19
Procedia PDF Downloads 36430 In silico Comparative Analysis of Chloroplast Genome (cpDNA) and Some Individual Genes (rbcL and trnH-psbA) in Pooideae Subfamily Members
Authors: Ibrahim Ilker Ozyigit, Ertugrul Filiz, Ilhan Dogan
Abstract:
An in silico analysis of Brachypodium distachyon, Triticum aestivum, Festuca arundinacea, Lolium perenne, Hordeum vulgare subsp. vulgare of the Pooideaea was performed based on complete chloroplast genomes including rbcL coding and trnH-psbA intergenic spacer regions alone to compare phylogenetic resolving power. Neighbor-joining, Minimum Evolution, and Unweighted Pair Group Method with arithmetic mean methods were used to reconstruct phylogenies with the highest bootstrap supported the obtained data from whole chloroplast genome sequence. The highest and lowest values from nucleotide diversity (π) analysis were found to be 0.315813 and 0.043495 in rbcL coding region in chloroplast genome and complete chloroplast genome, respectively. The highest transition/transversion bias (R) value was recorded as 1.384 in complete chloroplast genomes. F. arudinacea-L. perenne clade was uncovered in all phylogenies. Sequences of rbcL and trnH-psbA regions were not able to resolve the Pooideae phylogenies due to lack of genetic variation.Keywords: chloroplast DNA, Pooideae, phylogenetic analysis, rbcL, trnH-psbA
Procedia PDF Downloads 379429 Pharmacokinetics of First-Line Tuberculosis Drugs in South African Patients from Kwazulu-Natal: Effects of Pharmacogenetic Variation on Rifampicin and Isoniazid Concentrations
Authors: Anushka Naidoo, Veron Ramsuran, Maxwell Chirehwa, Paolo Denti, Kogieleum Naidoo, Helen McIlleron, Nonhlanhla Yende-Zuma, Ravesh Singh, Sinaye Ngcapu, Nesri Padayatachi
Abstract:
Background: Despite efforts to introduce new drugs and shorter drug regimens for drug-susceptible tuberculosis (TB), the standard first-line treatment has not changed in over 50 years. Rifampicin, isoniazid, and pyrazinamide are critical components of the current standard treatment regimens. Some studies suggest that microbiologic failure and acquired drug resistance are primarily driven by low drug concentrations that result from pharmacokinetic (PK) variability independent of adherence to treatment. Wide between-patient pharmacokinetic variability for rifampin, isoniazid, and pyrazinamide has been reported in prior studies. There may be several reasons for this variability. However, genetic variability in genes coding for drug metabolizing and transporter enzymes have been shown to be a contributing factor for variable tuberculosis drug exposures. Objective: We describe the pharmacokinetics of first-line TB drugs rifampicin, isoniazid, and pyrazinamide and assess the effect of genetic variability in relevant selected drug metabolizing and transporter enzymes on pharmacokinetic parameters of isoniazid and rifampicin. Methods: We conducted the randomized-controlled Improving retreatment success TB trial in Durban, South Africa. The drug regimen included rifampicin, isoniazid, and pyrazinamide. Drug concentrations were measured in plasma, and concentration-time data were analysed using nonlinear-mixed-effects models to quantify the effects of relevant covariates and single nucleotide polymorphisms (SNP’s) of drug metabolizing and transporter genes on rifampicin, isoniazid and pyrazinamide exposure. A total of 25 SNP’s: four NAT2 (used to determine acetylator status), four SLCO1B1, three Pregnane X receptor (NR1), six ABCB1 and eight UGT1A, were selected for analysis in this study. Genotypes were determined for each of the SNP’s using a TaqMan® Genotyping OpenArray™. Results: Among fifty-eight patients studied; 41 (70.7%) were male, 97% black African, 42 (72.4%) HIV co-infected and 40 (95%) on efavirenz-based ART. Median weight, fat-free mass (FFM), and age at baseline were 56.9 kg (interquartile range, IQR: 51.1-65.2), 46.8 kg (IQR: 42.5-50.3) and 37 years (IQR: 31-42), respectively. The pharmacokinetics of rifampicin and pyrazinamide was best described using one-compartment models with first-order absorption and elimination, while for isoniazid two-compartment disposition was used. The median (interquartile range: IQR) AUC (h·mg/L) and Cmax (mg/L) for rifampicin, isoniazid, and pyrazinamide were; 25.62 (23.01-28.53) and 4.85 (4.36-5.40), 10.62 (9.20-12.25) and 2.79 (2.61-2.97), 345.74 (312.03-383.10) and 28.06 (25.01-31.52), respectively. Eighteen percent of patients were classified as rapid acetylators, and 34% and 43% as slow and intermediate acetylators, respectively. Rapid and intermediate acetylator status based on NAT 2 genotype resulted in 2.3 and 1.6 times higher isoniazid clearance than slow acetylators. We found no effects of the SLCO1B1 genotypes on rifampicin pharmacokinetics. Conclusion: Plasma concentrations of rifampicin, isoniazid, and pyrazinamide were low overall in our patients. Isoniazid clearance was high overall and as expected higher in rapid and intermediate acetylators resulting in lower drug exposures. In contrast to reports from previous South African or Ugandan studies, we did not find any effects of the SLCO1B1 or other genotypes tested on rifampicin PK. However, our findings are in keeping with more recent studies from Malawi and India emphasizing the need for geographically diverse and adequately powered studies. The clinical relevance of the low tuberculosis drug concentrations warrants further investigation.Keywords: rifampicin, isoniazid pharmacokinetics, genetics, NAT2, SLCO1B1, tuberculosis
Procedia PDF Downloads 187428 Epigenetic Mechanisms Involved in the Occurrence and Development of Infectious Diseases
Authors: Frank Boris Feutmba Keutchou, Saurelle Fabienne Bieghan Same, Verelle Elsa Fogang Pokam, Charles Ursula Metapi Meikeu, Angel Marilyne Messop Nzomo, Ousman Tamgue
Abstract:
Infectious diseases are one of the most important causes of morbidity and mortality worldwide. These diseases are caused by micro-pathogenic organisms, such as bacteria, viruses, parasites, and fungi. Heritable changes in gene expression that do not involve changes to the underlying DNA sequence are referred to as epigenetics. Emerging evidence suggests that epigenetic mechanisms are important in the emergence and progression of infectious diseases. Pathogens can manipulate host epigenetic machinery to promote their own replication and evade immune responses. The Human Genome Project has provided new opportunities for developing better tools for the diagnosis and identification of target genes. Several epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA expression, have been shown to influence infectious disease outcomes. Understanding the epigenetic mechanisms underlying infectious diseases may result in the progression of new therapeutic approaches focusing on host-pathogen interactions. The goal of this study is to show how different infectious agents interact with host cells after infection.Keywords: epigenetic, infectious disease, micro-pathogenic organism, phenotype
Procedia PDF Downloads 80427 Evaluation of Two DNA Vaccine Constructs in Labeo rohita against Edwardsiella tarda
Authors: Ranjeeta Kumari, Makesh M, Gayatri Tripathi, K V Rajendran, Megha Bedekar
Abstract:
A comparative study on DNA immunization with recombinant glyceraldehyde-3-phosphate dehydrogenase (GAPDH) construct of Edwardsiella tarda (pGPD group) and a bicistronic construct expressing GAPDH plus IFN-γ of Labeo rohita as adjuvant (pGPD+IFN group) was undertaken in Labeo rohita along with the control animals. Successful co-expression of two genes that is GAPDH and IFN-γ was confirmed in SSN-1 cells line by RT-qPCR and western blot. The protective immune response of host to DNA vaccine construct was determined by RPS and specific antibody production. Fishes immunized with plasmids via intramuscular injection (I/M) exhibited a considerable relative percentage survivability of 66.66% in pGPD+IFN immunized group and 53.34% in pGPD immunized group after challenge with E. tarda. Antibody response was also significantly high in pGPD+IFN group at all time points under study. This was analysed by competitive ELISA, using anti GAPDH monoclonal antibodies. The experiment revealed that the GAPDH gene of E. tarda is one of the ideal candidates for generating protective immune response in L. rohita. Further addition of Interferon gamma to DNA vaccine construct can enhance the immune response in host.Keywords: DNA vaccine, Edwardsiella tarda, Labeo rohita, zoonosis, immune response
Procedia PDF Downloads 203426 Age Related Changes in the Neural Substrates of Emotion Regulation: Mechanisms, Consequences, and Interventions
Authors: Yasaman Mohammadi
Abstract:
Emotion regulation is a complex process that allows individuals to manage and modulate their emotional responses in order to adaptively respond to environmental demands. As individuals age, emotion regulation abilities may decline, leading to an increased vulnerability to mood disorders and other negative health outcomes. Advances in neuroimaging techniques have greatly enhanced our understanding of the neural substrates underlying emotion regulation and age-related changes in these neural systems. Additionally, genetic research has identified several candidate genes that may influence age-related changes in emotion regulation. In this paper, we review recent findings from neuroimaging and genetic research on age-related changes in the neural substrates of emotion regulation, highlighting the mechanisms and consequences of these changes. We also discuss potential interventions, including cognitive and behavioral approaches, that may be effective in mitigating age-related declines in emotion regulation. We propose that a better understanding of the mechanisms underlying age-related changes in emotion regulation may lead to the development of more targeted interventions aimed at promoting healthy emotional functioning in older adults. Overall, this paper highlights the importance of studying age-related changes in emotion regulation and provides a roadmap for future research in this field.Keywords: emotion regulation, aging, neural substrates, neuroimaging, emotional functioning, healthy aging
Procedia PDF Downloads 112425 Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique
Authors: Madhu Patial, Dharam Pal, Jagdish Kumar, H. K. Chaudhary
Abstract:
Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL.Keywords: wheat, haploid, imperata cylindrica, chromosome elimination technique
Procedia PDF Downloads 424424 Isolation and Characterization White Spot Syndrome Protein Envelope Protein 19 from Black Tiger Shrimp (Penaeus monodon)
Authors: Andi Aliah Hidayani, Asmi Citra Malina A. R. Tassakka, Andi Parenrengi
Abstract:
Vanname Shrimp is one of the high yielding varieties that are more resistant to virus attacks. However, now this shrimp more death due to virus attack such as white spot disease caused by white spot syndrome virus (WSSV). Various efforts have done to prevent the disease, like immunostimulatory, probiotics, and vaccine. White spot syndrome virus (WSSV) envelope protein VP19 gene is important because of its involvement in the system infection of shrimp. This study aimed to isolate and characterize an envelope protein VP19 – encoding gene of WSSV using WSSV infected Vanname Shrimp sample from some areas in South Sulawesi (Pangkep, Barru and Pinrang). The genomic of DNA were isolated from shrimp muscle using DTAB-CTAB method. Isolation of gene encoding envelope protein VP19 WSSV ws successfully performed with the results of the length of DNA fragment was 387 bp. The results of homology analysis using BLASTn homology suggested that these isolates genes from Barru, Pangkep and Pinrang have closest relationship with isolates from Mexican.Keywords: vanname, shrimp, WSSV, viral protein 19
Procedia PDF Downloads 535423 Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum
Authors: H. M. Takematsu, B. R. De Camargo, E. F. Noronha
Abstract:
The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use.Keywords: sugarcane bagasse, Cerrado biome , hollocelulase, lignocellulosic biomass
Procedia PDF Downloads 291422 Purple Sweet Potato Anthocyanin Attenuates the Fat-Induced Mortality in Drosophila Melanogaster
Authors: Lijun Wang, Zhen-Yu Chen
Abstract:
A high-fat diet induces the accumulation of lipid hydroperoxides, accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. The purple sweet potato is rich in antioxidant anthocyanin. The present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit fly was shortened from 56 to 35 days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation attenuated partially the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27 days for the 10% lard control flies, in contrast, they increased to 57 and 30 days in the PSPA-supplemented fruit flies. PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase, catalase and Rpn11, compared with those in the control lard diet. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. It was concluded that the lifespan-prolonging activity of PSPA was most likely mediated by modulating the genes of SOD, CAT and Rpn11.Keywords: purple sweet potato, anthocyanin, high-fat diet, oxidative stress
Procedia PDF Downloads 267