Search results for: students with learning disabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10818

Search results for: students with learning disabilities

5778 Investigating Best Strategies Towards Creating Alternative Assessment in Literature

Authors: Sandhya Rao Mehta

Abstract:

As ChatGpt and other Artificial Intelligence (AI) forms are becoming part of our regular academic world, the consequences are being gradually discussed. The extent to which an essay written by a student is itself of any value if it has been downloaded by some form of AI is perhaps central to this discourse. A larger question is whether writing should be taught as an academic skill at all. In literature classrooms, this has major consequences as writing a traditional paper is still the single most preferred form of assessment. This study suggests that it is imperative to investigate alternative forms of assessment in literature, not only because the existing forms can be written by AI, but in a larger sense, students are increasingly skeptical of the purpose of such work. The extent to which an essay actually helps the students professionally is a question that academia has not yet answered. This paper suggests that using real-world tasks like creating podcasts, video tutorials, and websites is a far better way to evaluate students' critical thinking and application of ideas, as well as to develop digital skills which are important to their future careers. Using the example of a course in literature, this study will examine the possibilities and challenges of creating digital projects as a way of confronting the complexities of student evaluation in the future. The study is based on a specific university English as a Foreign Language (EFL) context.

Keywords: assessment, literature, digital humanities, chatgpt

Procedia PDF Downloads 90
5777 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 162
5776 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 341
5775 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development

Authors: Cinthya Olivares Garita

Abstract:

Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.

Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form

Procedia PDF Downloads 35
5774 The Difficulties Male Nurses Facing up Due to the Nurse Degree which has the Meaning of ‘Sister’ in Turkish

Authors: Hacer Erdöl, Merve Aydın, Hacer Kobya Bulut, Kıymet Yeşilçiçek Çalık

Abstract:

Like all occupations, nursing is significantly influenced by the society which it serves and it also affects it. Social structure affects attitudes of nurses, nursing practice, society's attitudes towards nursing and those who have chosen nursing as a profession. People who choose nursing schools take the views of the society’s they live in on nursing to nursing school. Until the 1960s, many nursing schools had not accepted men as students and women had received nursing education and profession had been carried out by women. In our country, in 2007 an amendment to article eight of Nursing Law was passed and with these changes men also began to be able to choose the nursing as a profession. In Turkish, nurse means 'sister'. Hence, in this study to determine the problems that male nursing students likely encounter at the clinic, non-clinical environment and in their private life regarding the title of nurse, among qualitative research methods phenomenological research design was used. Using purpose sampling method, a total of 18 voluntary male students-13 in third grade and 5 in fourth grade at nursing school- were taken to the study. Data were collected through interviews and by the ethical principles much attention was paid to ensure the confidentiality and to protect participants’ identity. During the interviews lasting 30-40 minutes on average, nine pre-configured standard questions were asked and when necessary free questions were also used in order to ensure the clarity of the responses. With pre- configured standard questions, the reasons why students chose the profession, the problems they had in clinical and non-clinical environment and the potential problems they might encounter in their private lives regarding the title of nurse were questioned. Content analysis was performed on data collected and three main themes were obtained. According to the findings of the evaluation of data, it was found that almost all the students preferred the profession due to possible work opportunities, there were students who did not bother nurse title as well as the ones who did bother and as the most important problem they might encounter in their private lives was to feel worried if their kids had to answer "What does your father" question as "my dad is a nurse" and being ridiculed afterwards. The results of this study show that studies should be done to change the social judgment stemmed from the recognition of nursing as a female profession and take advantage of media through creating public spotlight to accomplish this.

Keywords: choice of profession, the title of the profession, title problems, nursing

Procedia PDF Downloads 205
5773 Neural Style Transfer Using Deep Learning

Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu

Abstract:

We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.

Keywords: neural networks, computer vision, deep learning, convolutional neural networks

Procedia PDF Downloads 102
5772 Gaia (Earth) Education Philosophy – A Journey Back to the Future

Authors: Darius Singh

Abstract:

This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.

Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning

Procedia PDF Downloads 72
5771 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 100
5770 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System

Authors: Loreta Axhami

Abstract:

Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.

Keywords: authoritarian pedagogic model, education system, ICT, media literacy

Procedia PDF Downloads 146
5769 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 162
5768 Translation and Adaptation of Computer Assisted ASPIRA Smoking Prevention Program in Romania

Authors: Z. Abram, V. Nadasan, J. Balint, J. L. Ferencz

Abstract:

Introduction: Online smoking prevention programs became popular in the last time. In order to extend the use of such programs, existing applications can be adapted and translated in the native languages of the target groups. It is the first time that in Romania such a software was implemented. Our goal was to provide a computer-aided intervention with attractive content targeting high school students who are familiar with information and communication technology. Material and methods: ASPIRA is the Romanian/Hungarian adapted version of a smoking prevention program created in USA. Prior to apply the questionnaire and ASPIRA online program which contains five modules that include tests, videos and interactive games, the program was tested in some IT laboratories on a group of schoolchildren and students. The pilot study questionnaires were completed considering the opinions of young people and the functionality of the software. Results: Above 90% of participants reported a good or very good impression about the ASPIRA program. Only a small minority found that the program included some parts which were too long or reported the existence of any technical problems regarding the functionality of the software. 76% of the participants had little or very little difficulty in understanding the messages presented by the English speaking characters. Only 7.5% of the participants thought that the program included content that was not appropriate for the local culture. Conclusions: The vast majority of students reported favorite impressions about ASPIRA online program. High school students and boys were more critical. Language and cultural barriers did not have the potential to reduce in a significant manner the effectiveness of the tested program.

Keywords: smoking prevention, ASPIRA online program, youth opinions, language/cultural barriers

Procedia PDF Downloads 264
5767 The Role of Eclectic Approach to Teach Communicative Function at Secondary Level

Authors: Fariha Asif

Abstract:

The main purpose of this study was to investigate the effectiveness of eclectic approach in teaching of communicative functions. The objectives of the study were to get the information about the use of communicative functions through eclectic approach and to point out the most effective way of teaching functional communication and social interaction with the help of communicative activities through eclectic approach. The next step was to select sample from the selected population. As the research was descriptive so a questionnaire was developed on the basis of hypothesis and distributed to different selected schools of Lahore, Pakistan. Then data was tabulated, analyzed and interpreted through computer by finding percentages of different responses given by teachers to see the results. It was concluded that eclectic approach is effective in teaching communicative functions and communicative functions are better when taught through eclectic approach and communicative activities are more appropriate way of teaching communicative functions. It was found those teachers who were qualified in ELT gave better opinions as compare to those who did not have this degree. Techniques like presentations, dialogues and roleplay proved to be effective for teaching functional communication through communicative activities and also motivate the students not only in learning rules but also in using them to communicate with others.

Keywords: methodology, functions, teaching, ESP

Procedia PDF Downloads 571
5766 The Perception of Teacher Candidates' on History in Non-Educational TV Series: The Magnificent Century

Authors: Evren Şar İşbilen

Abstract:

As it is known, the movies and tv series are occupying a large part in the daily lives of adults and children in our era. In this connection, in the present study, the most popular historical TV series of recent years in Turkey, “Muhteşem Yüzyıl” (The Magnificent Century), was selected as the sample for the data collection in order to explore the perception of history of university students’. The data collected was analyzed bothqualitatively and quantitatively. The findings discussed in relation to the possible educative effects of historical non-educational TV series and movies on students' perceptions related to history. Additionally, suggestions were made regarding to the utilization of non-educational TV series or movies in education in a positive way.

Keywords: education, history, movies, teacher candidates

Procedia PDF Downloads 336
5765 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 73
5764 Promoting Self-Esteem and Social Integration in Secondary German Schools: An Evaluation Study

Authors: Susanne Manes, Anni Glaeser, Katharina Wick, Bernhard Strauss, Uwe Berger

Abstract:

Introduction: Over the last decades growing rates of mental health concerns among children and adolescents have been observed. At the same time, physical well-being of children and adolescents becomes increasingly impaired as well. Schools play an important role in preventing mental and physical disorders and in promoting well-being. Self-esteem, as well as social integration, are vital influence factors for mental and physical well-being. The purpose of this study was to develop and evaluate the program 'VorteilJena' for secondary schools in Germany focusing on self-esteem and social integration to improve mental and physical well-being. Method: The school-based health promotion program was designed for students in 5th grade and higher. It consists of several short pedagogical exercises instructed by a teacher and were integrated into the regular class over the course of ten weeks. The exercises focused on fostering social integration using either tasks improving team spirit or exercises that increase tolerance and sense of belonging. Other exercises focused on strengthening the self-esteem of the students. Additionally, the program included a poster exhibition titled 'Belonging' which was put up in the school buildings. The exhibition comprised ten posters which addressed relevant risk factors and resources related to social integration and self-esteem. The study was a randomized controlled sequential study with a pre and post measurement conducted in ten German schools. A total of 1642 students (44% male) were recruited. Their age ranged from 9 to 21 years (M=12.93 years; SD= 2.11). The program was conducted in classes ranging from 5th to 12th grade. Results: The program improved wellbeing, self-esteem and social integration of the involved students compared to the control group. Differential effects depending on implementation rates or age of the students will be analyzed. Moreover, implications for future school-based health promotion programs targeting self-esteem and social integration will be discussed. Conclusion: Social integration considerably influences self-esteem and well-being of students and can be targeted by school-based programs including short and modest exercises. Since a sufficient implementation of health promotion programs is essential, the present program due to its practicability represents a good opportunity to install health promotion focusing on social integration in schools.

Keywords: social integration, well-being, health promotion in schools, self-esteem

Procedia PDF Downloads 202
5763 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 156
5762 Burnout in Board-Certified Behavior Analysts

Authors: Casey Kane

Abstract:

Burnout is a pervasive challenge among board-certified behavior analysts (BCBAs) working with individuals with developmental disabilities. Addressing burnout is essential for maintaining the well-being of practitioners and the quality of care provided to clients. Developing effective strategies and interventions to mitigate burnout is imperative. This paper offers a comprehensive review of the history of burnout, examines current research within applied behavior analysis (ABA), and explores existing theories and factors contributing to burnout among BCBAs. The necessity of addressing burnout through targeted interventions, including self-advocacy strategies, will be highlighted to emphasize the importance of supporting BCBAs in their professional roles.

Keywords: burnout, applied behavior analysis, board-certified behavior analysts, self-advocacy

Procedia PDF Downloads 9
5761 Designing Program for Developing Self-Esteem of Gifted Children

Authors: Mohammad Jamalallail

Abstract:

Self-esteem implies a person’s overall self-worth, self-respect, and self-value. It helps a person to maintain good mental health, personality, and achievement. Gifted students face some emotional problems, sometimes, which cause decreases in their self-esteem. Such emotional problems include loneliness, anxiety, and depression as examples. For this reason, designing a counseling program is necessary for gifted students who need a high level of self-esteem. The available counseling programs focused on developmental aspect only to the best of the writer’s knowledge. While the proposed program focuses on both clinical and developmental counseling by applying psychoanalytic play therapy. The proposed program consists of; Theoretical background such as; Behavior, and RET. It also consists of counseling procedures and therapeutic interventions.

Keywords: self-esteem, gifted, program, design

Procedia PDF Downloads 430
5760 Discovering the Relationship between Teaching Creativity and Creative Writing in Pakistan

Authors: Humaira Irfan Khan

Abstract:

The paper explores teaching of creative writing in Pakistani classroom. The data collected from the questionnaire and focus group interview with a large public sector university’s Master of Arts in English students, who are also in-service school teachers, discovers that English teachers in Pakistan do not teach to develop the creative writing of pupils. The findings show that English teachers can define creative writing but are confused about strategies needed in rousing learners’ interest in creative writing. The teachers make their students memorise compositions from the textbooks to be reproduced in class. English teachers must be encouraged and trained to engage in activities that are essential for enhancing creative writing in schools.

Keywords: creative writing, teaching creative writing, textbooks, Pakistan

Procedia PDF Downloads 359
5759 Foundations for Global Interactions: The Theoretical Underpinnings of Understanding Others

Authors: Randall E. Osborne

Abstract:

In a course on International Psychology, 8 theoretical perspectives (Critical Psychology, Liberation Psychology, Post-Modernism, Social Constructivism, Social Identity Theory, Social Reduction Theory, Symbolic Interactionism, and Vygotsky’s Sociocultural Theory) are used as a framework for getting students to understand the concept of and need for Globalization. One of critical psychology's main criticisms of conventional psychology is that it fails to consider or deliberately ignores the way power differences between social classes and groups can impact the mental and physical well-being of individuals or groups of people. Liberation psychology, also known as liberation social psychology or psicología social de la liberación, is an approach to psychological science that aims to understand the psychology of oppressed and impoverished communities by addressing the oppressive sociopolitical structure in which they exist. Postmodernism is largely a reaction to the assumed certainty of scientific, or objective, efforts to explain reality. It stems from a recognition that reality is not simply mirrored in human understanding of it, but rather, is constructed as the mind tries to understand its own particular and personal reality. Lev Vygotsky argued that all cognitive functions originate in, and must therefore be explained as products of social interactions and that learning was not simply the assimilation and accommodation of new knowledge by learners. Social Identity Theory discusses the implications of social identity for human interactions with and assumptions about other people. Social Identification Theory suggests people: (1) categorize—people find it helpful (humans might be perceived as having a need) to place people and objects into categories, (2) identify—people align themselves with groups and gain identity and self-esteem from it, and (3) compare—people compare self to others. Social reductionism argues that all behavior and experiences can be explained simply by the affect of groups on the individual. Symbolic interaction theory focuses attention on the way that people interact through symbols: words, gestures, rules, and roles. Meaning evolves from human their interactions in their environment and with people. Vygotsky’s sociocultural theory of human learning describes learning as a social process and the origination of human intelligence in society or culture. The major theme of Vygotsky’s theoretical framework is that social interaction plays a fundamental role in the development of cognition. This presentation will discuss how these theoretical perspectives are incorporated into a course on International Psychology, a course on the Politics of Hate, and a course on the Psychology of Prejudice, Discrimination and Hate to promote student thinking in a more ‘global’ manner.

Keywords: globalization, international psychology, society and culture, teaching interculturally

Procedia PDF Downloads 257
5758 Unhealthy Food Consumption Behavior in Suan Sunandha Rajabhat Universities

Authors: Narumon Piaseu

Abstract:

This survey research was aimed to describe and compare consumption behavior of health risk food among students in Suan Sunandha Rajabhat University. Sample included 400 undergraduate students enrolled in the first semester of 2008 academic year. Data were collected by using self reported questionnaire developed by the researcher. Data were then analyzed by descriptive statistics including frequency, percentage, mean, standard deviation, and inferential statistics including independent t-test, and Oneway ANOVA. Results revealed that most of the sample were women (67%), enrolled in social related programs (74%). Approximately half of them (45.5%) stayed in dormitory. The mean of monthly income was 5,164 Baht and daily food expenditure was 114.55 Baht. Majority of them (83%) had ready-to-eat food. A major factor influencing their food selection was their parents (61%). A main reason for their food selection was food that looks good (70.75%). Almost half of them (46.25%) had heavy exercise less than 3 times per week. Regarding knowledge on health risk food, 43.5% of the sample had good knowledge. The followings were moderate (41%) and poor (41%). Most of the sample (60.75%) had consumption behavior at low risk. The following was at moderate risk (37.25%). Only 2% were at high risk. Among the sample, consumption behavior of health risk food were significantly different in years of study (F = 3.168, p = .024), daily food expenditure (F = 8.950, p <.001), and knowledge on health risk food (F = 37.856, p <.001), while no significant difference in consumption behavior of health risk food was found in those with a difference in gender, program of study, living place, and monthly income. Results indicate the importance of providing knowledge regarding health risk food for students and their parents in order to promote appropriate food consumption behavior among the students.

Keywords: food consumption, risky behavior, Suan Sunandha Rajabhat University, health risk

Procedia PDF Downloads 474
5757 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 251
5756 Youth Health Promotion Project for Indigenous People in Canada: Together against Bullying and Cyber-Dependence

Authors: Mohamed El Fares Djellatou, Fracoise Filion

Abstract:

The Ashukin program that means bridge in Naskapi or Atikamekw language, has been designed to offer a partnership between nursing students and an indigenous community. The students design a health promotion project tailored to the needs of the community. The issues of intimidation in primary school and cyber-dependence in high school were some concerns in a rural Atikamekw community. The goal of the project was to have a conversation with indigenous youths, aged 10-16 years old, on the challenges presented by intimidation and cyber dependence as well as promoting healthy relationships online and within the community. Methods: Multiple progressive inquiry questions (PIQs) were used to assess the feasibility and importance of this project for the Atikamekw nation, and to determine a plan to follow. The theoretical foundations to guide the conception of the project were the Population Health Promotion Model (PHPM), the First Nations Holistic Lifelong Learning Model, and the Medicine Wheel. A broad array of social determinants of health were addressed, including healthy childhood development, personal health practices, and coping skills, and education. The youths were encouraged to participate in interactive educational sessions, using PowerPoint presentations and pamphlets as the main effective strategies. Additional tools such as cultural artworks and physical activities were introduced to strengthen the inter-relational and team spirit within the Indigenous population. A quality assurance tool (QAT) was developed specifically to determine the appropriateness of these health promotion tools. Improvements were guided by the feedback issued by the indigenous schools’ teachers and social workers who filled the QATs. Post educational sessions, quantitative results have shown that 93.48% of primary school students were able to identify the different types of intimidation, 72.65% recognized more than two strategies, and 52.1% were able to list at least four resources to diffuse intimidation. On the other hand, around 75% of the adolescents were able to name at least three negative effects, and 50% listed three strategies to reduce cyber-dependence. This project was meant to create a bridge with the First Nation through health promotion, a population that is known to be disadvantaged due to systemic health inequity and disparities. Culturally safe care was proposed to deal with the two identified priority issues, and an educational toolkit was given to both schools to ensure the sustainability of the project. The project was self-financed through fundraising activities, and it yielded better results than expected.

Keywords: indigenous, first nation, bullying, cyber-dependence, internet addiction, intimidation, youth, adolescents, school, community nursing, health promotion

Procedia PDF Downloads 101
5755 Customer Satisfaction on Reliability Dimension of Service Quality in Indian Higher Education

Authors: Rajasekhar Mamilla, G. Janardhana, G. Anjan Babu

Abstract:

The present research studies analyses the students’ satisfaction with university performance regarding the reliability dimension, ability of professors and staff to perform the promised services with quality to students in the post-graduate courses offered by Sri Venkateswara University in India. The research is done with the notion that the student compares the perceived performance with prior expectations. Customer satisfaction is seen as the outcome of this comparison. The sample respondents were administered with the schedule based on the stratified random technique for this study. Statistical techniques such as factor analysis, t-test and correlation analysis were used to accomplish the respective objectives of the study.

Keywords: satisfaction, reliability, service quality, customer

Procedia PDF Downloads 552
5754 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 351
5753 The Use of Social Media in a UK School of Pharmacy to Increase Student Engagement and Sense of Belonging

Authors: Samantha J. Hall, Luke Taylor, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman

Abstract:

Medway School of Pharmacy – a joint collaboration between the University of Kent and the University of Greenwich – is a large school of pharmacy in the United Kingdom. The school primarily delivers the accredited Master or Pharmacy (MPharm) degree programme. Reportedly, some students may feel isolated from the larger student body that extends across four separate campuses, where a diverse range of academic subjects is delivered. In addition, student engagement has been noted as being limited in some areas, as evidenced in some cases by poor attendance at some lectures. In January 2015, the University of Kent launched a new initiative dedicated to Equality, Diversity and Inclusivity (EDI). As part of this project, Medway School of Pharmacy employed ‘Student Success Project Officers’ in order to analyse past and present school data. As a result, initiatives have been implemented to i) negate disparities in attainment and ii) increase engagement, particularly for Black, Asian and Minority Ethnic (BAME) students which make up for more than 80% of the pharmacy student cohort. Social media platforms are prevalent, with global statistics suggesting that they are most commonly used by females between the ages of 16-34. Student focus groups held throughout the academic year brought to light the school’s need to use social media much more actively. Prior to the EDI initiative, social media usage for Medway School of Pharmacy was scarce. Platforms including: Facebook, Twitter, Instagram, YouTube, The Student Room and University Blogs were either introduced or rejuvenated. This action was taken with the primary aim of increasing student engagement. By using a number of varied social media platforms, the university is able to capture a large range of students by appealing to different interests. Social media is being used to disseminate important information, promote equality and diversity, recognise and celebrate student success and also to allow students to explore the student life outside of Medway School of Pharmacy. Early data suggests an increase in lecture attendance, as well as greater evidence of student engagement highlighted by recent focus group discussions. In addition, students have communicated that active social media accounts were imperative when choosing universities for 2015/16. It allows students to understand more about the University and community prior to beginning their studies. By having a lively presence on social media, the university can use a multi-faceted approach to succeed in early engagement, as well as fostering the long term engagement of continuing students.

Keywords: engagement, social media, pharmacy, community

Procedia PDF Downloads 328
5752 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.

Procedia PDF Downloads 282
5751 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 118
5750 An Empirical Study of the International Financial Reporting Standards Education in the United States

Authors: Angela McCaskill

Abstract:

Accounting graduates in most United States universities are not being adequately taught International Financial Reporting Standards (IFRS). As such they are not prepared with the knowledge and skills necessary to remain competitive in international businesses. One of the reasons behind the ill preparation is the lack of specific international accounting instruction available in the U.S. This paper explores the importance of IFRS education through the lenses of graduate accounting majors. The paper specifically explores graduate accounting major’s preparedness in IFRS based on their recent completion of a Master in Accountancy degree where IFRS had been integrated. The data for the study was collected via face-to face and telephone/Skype interviews and questionnaires. After the interview the participants also agreed to answer two supplementary questions. The participants were to determine the amounts that should be reported on the balance sheet under (1) IFRS and (2) U.S. GAAP. These questions intended to test their knowledge of both sets of standards. The sample consisted of on-line and brick and mortar university students enrolled in their graduate program during the period from spring semester 2016 to summer semester 2016. This study shows that a separate course should be devoted to teaching IFRS and convergence related issues. There is a direct correlation between the knowledge level of those students taking an IFRS course and the successful completion of the supplementary questions compared to those who only had IFRS instruction mixed into their U.S. GAAP based instruction. Students who took an international accounting course were better prepared for the IFRS conversion than those who did not have a separate course. Academically, universities need to take a deeper look into the needs of their students and do better at incorporating international standards in their curriculum.

Keywords: accounting education, global accounting standards, international accounting, IFRS and U.S. GAAP convergence, IFRS, U.S. GAAP

Procedia PDF Downloads 263
5749 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 279