Search results for: computer- supported collaborative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11322

Search results for: computer- supported collaborative learning

6342 Enjoyable Learning Experience, but also Difficult: Young, Unaccompanied Refugees' Perspectives on Participatory Research

Authors: Kristina Johansen

Abstract:

Participation is a universal right that all children and young people are entitled to, according to the Convention on the Rights of the Child. Social work and action research share participation as a core value. However, we have limited knowledge of how children and young people of refugee background experience taking part in participatory research. The point of departure of this presentation is a qualitative study involving young, unaccompanied refugees, addressing the issues of psychosocial health and participation. The research design included participatory methods and action research. The presentation highlights the perspectives of young, unaccompanied refugees on what made participating in the research process valuable, what created challenges for participation and what created challenges for the action part in the research process. Feedback from participants indicated that taking part in enjoyable experiences, being listened to, sharing experiences, and learning from each other contributed to making the participation valuable. At the same time, participants addressed challenges related to communication, sensitive topics, participation in decision-making and powerlessness. The presentation will end with implications for social work research and practice involving young refugees.

Keywords: participatory research, power, young unaccompanied refugeees, relationships, participation

Procedia PDF Downloads 93
6341 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 50
6340 Ranking of Employability Skills from Employers' Perspective against Outcome Based Education Criteria for Engineering Graduates: A Case Study of Pakistan

Authors: Mohammad Pervez Mughal, Huma Shazadi

Abstract:

Pakistan became a full signatory to the Washington Accord in June 2017, with the expectation that undergraduate engineering programs will be recognized by other signatory countries. Pakistan's accrediting body, the Pakistan Engineering Council (PEC), has distributed 12 Program Learning Outcomes (PLOs) under Outcome Based Education (OBE) criteria for engineering institutions in Pakistan to follow. However, no research has been conducted to rank graduates' employability skills in relation to these PLOs from the perspective of potential employers. The current work makes a concerted effort to rank the skills required by employers, which include both technical and non-technical skill sets. A survey was conducted throughout Pakistan to validate the relative importance of employability skills. 198 HR personnel, 1554 graduating students, 1540 alumni, and 267 faculty members provided valid responses, which were analyzed. According to the findings, ethics, communication, and lifelong learning are the most important attributes of engineering graduates' employability in the eyes of employers. Graduating students, alumni, and faculty's differential prospects are also presented and compared to employers' perspectives.

Keywords: employability skills, employers' perspective, outcome-based education, engineering graduates, Pakistan

Procedia PDF Downloads 127
6339 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 205
6338 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 222
6337 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 378
6336 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

Authors: Christiana Gauci-Sciberras

Abstract:

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.

Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition

Procedia PDF Downloads 211
6335 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors: S. V. Prabhakar Vattikuti, Chan Byon

Abstract:

In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.

Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Procedia PDF Downloads 302
6334 Submodeling of Mega-Shell Reinforced Concrete Solar Chimneys

Authors: Areeg Shermaddo, Abedulgader Baktheer

Abstract:

Solar updraft power plants (SUPPs) made from reinforced concrete (RC) are an innovative technology to generate solar electricity. An up to 1000 m high chimney represents the major part of each SUPP ensuring the updraft of the warmed air from the ground. Numerical simulation of nonlinear behavior of such large mega shell concrete structures is a challenging task, and computationally expensive. A general finite element approach to simulate reinforced concrete bearing behavior is presented and verified on a simply supported beam, as well as the technique of submodeling. The verified numerical approach is extended and consecutively transferred to a more complex chimney structure of a SUPP. The obtained results proved the reliability of submodeling technique in analyzing critical regions of simple and complex mega concrete structures with high accuracy and dramatic decrease in the computation time.

Keywords: ABAQUS, nonlinear analysis, submodeling, SUPP

Procedia PDF Downloads 221
6333 Forging A Distinct Understanding of Implicit Bias

Authors: Benjamin D Reese Jr

Abstract:

Implicit bias is understood as unconscious attitudes, stereotypes, or associations that can influence the cognitions, actions, decisions, and interactions of an individual without intentional control. These unconscious attitudes or stereotypes are often targeted toward specific groups of people based on their gender, race, age, perceived sexual orientation or other social categories. Since the late 1980s, there has been a proliferation of research that hypothesizes that the operation of implicit bias is the result of the brain needing to process millions of bits of information every second. Hence, one’s prior individual learning history provides ‘shortcuts’. As soon as one see someone of a certain race, one have immediate associations based on their past learning, and one might make assumptions about their competence, skill, or danger. These assumptions are outside of conscious awareness. In recent years, an alternative conceptualization has been proposed. The ‘bias of crowds’ theory hypothesizes that a given context or situation influences the degree of accessibility of particular biases. For example, in certain geographic communities in the United States, there is a long-standing and deeply ingrained history of structures, policies, and practices that contribute to racial inequities and bias toward African Americans. Hence, negative biases among groups of people towards African Americans are more accessible in such contexts or communities. This theory does not focus on individual brain functioning or cognitive ‘shortcuts.’ Therefore, attempts to modify individual perceptions or learning might have negligible impact on those embedded environmental systems or policies that are within certain contexts or communities. From the ‘bias of crowds’ perspective, high levels of racial bias in a community can be reduced by making fundamental changes in structures, policies, and practices to create a more equitable context or community rather than focusing on training or education aimed at reducing an individual’s biases. The current paper acknowledges and supports the foundational role of long-standing structures, policies, and practices that maintain racial inequities, as well as inequities related to other social categories, and highlights the critical need to continue organizational, community, and national efforts to eliminate those inequities. It also makes a case for providing individual leaders with a deep understanding of the dynamics of how implicit biases impact cognitions, actions, decisions, and interactions so that those leaders might more effectively develop structural changes in the processes and systems under their purview. This approach incorporates both the importance of an individual’s learning history as well as the important variables within the ‘bias of crowds’ theory. The paper also offers a model for leadership education, as well as examples of structural changes leaders might consider.

Keywords: implicit bias, unconscious bias, bias, inequities

Procedia PDF Downloads 18
6332 Urban Planning in Biskra, Algeria

Authors: Chala Elhassen

Abstract:

City planning and urban management seem more complex our days compared to past times. The interaction of many factors both endogenous and exogenous made more difficult the urban fact. The city has changed status with the demographic bulge. It passed the primary status meeting limited requirements to a multidisciplinary status marked by the diversity of needs. These increase with the increase in population and living standard. Our era is marked by urbanization, complex phenomenon that develops both in industrialized countries in those of the third world. Human concentrations increasingly have significant multiplier effects on the social and economic structure of a region or a country. On the whole, the issue of urban planning revolved around questions related firstly to the understanding of the phenomena of urbanization; and also in search of the most appropriate ways to ensure control, the efficiency and consistency of the urbanization process. Urban planning remains an ambiguous area that mixes scientific contributions, technical, artistic, administrative and legal in varying proportions. What is the founder of specificity is that it always presupposes the existence of a will to act, itself supported by a thorough knowledge of will.

Keywords: urbanization, urban planning, management, industrialized countries

Procedia PDF Downloads 482
6331 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering

Authors: Zelalem Fantahun

Abstract:

Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.

Keywords: POS tagging, Amharic, unsupervised learning, k-means

Procedia PDF Downloads 455
6330 PlayTrain: A Research and Intervention Project for Early Childhood Teacher Education

Authors: Dalila Lino, Maria Joao Hortas, Carla Rocha, Clarisse Nunes, Natalia Vieira, Marina Fuertes, Kátia Sa

Abstract:

The value of play is recognized worldwide and is considered a fundamental right of all children, as defined in Article 31 of the United Nations Children’s Rights. It is consensual among the scientific community that play, and toys are of vital importance for children’s learning and development. Play promotes the acquisition of language, enhances creativity and improves social, affective, emotional, cognitive and motor development of young children. Young children ages 0 to 6 who have had many opportunities to get involved in play show greater competence to adapt to new and unexpected situations and more easily overcome the pain and suffering caused by traumatic situations. The PlayTrain Project aims to understand the places/spaces of play in the education of children from 0 to 6 years and promoting the training of preschool teachers to become capable of developing practices that enhance children’s agency, experimentation in the physical and social world and the development of imagination and creativity. This project follows the Design-Based-Research (DBR) and has two dimensions: research and intervention. The participants are 120 students from the Master in Pre-school Education of the Higher School of Education, Polytechnic Institute of Lisbon enrolled in the academic year 2018/2019. The development of workshops focused on the role of play and toys for young children’s learning promotes the participants reflection and the development of skills and knowledge to construct developmentally appropriated practices in early childhood education. Data was collected through an online questionnaire and focal groups. Results show that the PlayTrain Project contribute to the development of a body of knowledge about the role of play for early childhood education. It was possible to identify the needs of preschool teacher education and to enhance the discussion among the scientific and academic community about the importance of deepening the role of play and toys in the study plans of the masters in pre-school education.

Keywords: children's learning, early childhood education, play, teacher education, toys

Procedia PDF Downloads 147
6329 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 168
6328 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 143
6327 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 167
6326 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach

Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane

Abstract:

The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.

Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.

Procedia PDF Downloads 147
6325 Simplified Mobile AR Platform Design for Augmented Tourism

Authors: Eric Hawkinson, Edgaras Artemciukas

Abstract:

This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.

Keywords: augmented tourism, augmented reality, user experience, mobile design, e-tourism

Procedia PDF Downloads 221
6324 Human-Computer Interaction: Strategies for Ensuring the Design of User-Centered Web Interfaces for Smartphones

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

The widespread adoption and increasing proliferation of smartphones that started during the first decade of the twenty-first century have enabled their users to communicate and access information in ways that were merely thought of as possibilities in the few years before the smartphone revolution. A product of the convergence of the cellular phone and portable computer, the smartphone provides an additional important function that used to be the exclusive domain of desktop-bound computers and portable computers: Web Browsing. For increasing numbers of users, the smartphone and allied devices such as tablet computers have become their first and often their only means of accessing the World Wide Web. This has led to the development of websites that cater to the needs of the new breed of smartphone-carrying web users. The smaller size of smartphones as compared with conventional computers has provided unique challenges to web interface designers. The smaller screen size and touchscreen interface have made it much more difficult to read and navigate through web pages that were in most part designed for traditional desktop and portable computers. Although increasing numbers of websites now provide an alternate website formatted for smartphones, problems with ease of use, reliability and usability still remain. This study focuses on the identification of the problems associated with smartphone web interfaces, the compliance with accepted standards of user-oriented web interface design, the strategies that could be utilized to ensure the design of user-centric web interfaces for smartphones, and the identification of the current trends and developments related to user-centric web interface design intended for the consumption of smartphone users.

Keywords: human-computer interaction, user-centered design, web interface, mobile, smartphone

Procedia PDF Downloads 361
6323 Effect of Classroom Acoustic Factors on Language and Cognition in Bilinguals and Children with Mild to Moderate Hearing Loss

Authors: Douglas MacCutcheon, Florian Pausch, Robert Ljung, Lorna Halliday, Stuart Rosen

Abstract:

Contemporary classrooms are increasingly inclusive of children with mild to moderate disabilities and children from different language backgrounds (bilinguals, multilinguals), but classroom environments and standards have not yet been adapted adequately to meet these challenges brought about by this inclusivity. Additionally, classrooms are becoming noisier as a learner-centered as opposed to teacher-centered teaching paradigm is adopted, which prioritizes group work and peer-to-peer learning. Challenging listening conditions with distracting sound sources and background noise are known to have potentially negative effects on children, particularly those that are prone to struggle with speech perception in noise. Therefore, this research investigates two groups vulnerable to these environmental effects, namely children with a mild to moderate hearing loss (MMHLs) and sequential bilinguals learning in their second language. In the MMHL study, this group was assessed on speech-in-noise perception, and a number of receptive language and cognitive measures (auditory working memory, auditory attention) and correlations were evaluated. Speech reception thresholds were found to be predictive of language and cognitive ability, and the nature of correlations is discussed. In the bilinguals study, sequential bilingual children’s listening comprehension, speech-in-noise perception, listening effort and release from masking was evaluated under a number of different ecologically valid acoustic scenarios in order to pinpoint the extent of the ‘native language benefit’ for Swedish children learning in English, their second language. Scene manipulations included target-to-distractor ratios and introducing spatially separated noise. This research will contribute to the body of findings from which educational institutions can draw when designing or adapting educational environments in inclusive schools.

Keywords: sequential bilinguals, classroom acoustics, mild to moderate hearing loss, speech-in-noise, release from masking

Procedia PDF Downloads 331
6322 Developing a Quality Mentor Program: Creating Positive Change for Students in Enabling Programs

Authors: Bianca Price, Jennifer Stokes

Abstract:

Academic and social support systems are critical for students in enabling education; these support systems have the potential to enhance the student experience whilst also serving a vital role for student retention. In the context of international moves toward widening university participation, Australia has developed enabling programs designed to support underrepresented students to access to higher education. The purpose of this study is to examine the effectiveness of a mentor program based within an enabling course. This study evaluates how the mentor program supports new students to develop social networks, improve retention, and increase satisfaction with the student experience. Guided by Social Learning Theory (SLT), this study highlights the benefits that can be achieved when students engage in peer-to-peer based mentoring for both social and learning support. Whilst traditional peer mentoring programs are heavily based on face-to-face contact, the present study explores the difference between mentors who provide face-to-face mentoring, in comparison with mentoring that takes place through the virtual space, specifically via a virtual community in the shape of a Facebook group. This paper explores the differences between these two methods of mentoring within an enabling program. The first method involves traditional face-to-face mentoring that is provided by alumni students who willingly return to the learning community to provide social support and guidance for new students. The second method requires alumni mentor students to voluntarily join a Facebook group that is specifically designed for enabling students. Using this virtual space, alumni students provide advice, support and social commentary on how to be successful within an enabling program. Whilst vastly different methods, both of these mentoring approaches provide students with the support tools needed to enhance their student experience and improve transition into University. To evaluate the impact of each mode, this study uses mixed methods including a focus group with mentors, in-depth interviews, as well as engaging in netnography of the Facebook group ‘Wall’. Netnography is an innovative qualitative research method used to interpret information that is available online to better understand and identify the needs and influences that affect the users of the online space. Through examining the data, this research will reflect upon best practice for engaging students in enabling programs. Findings support the applicability of having both face-to-face and online mentoring available for students to assist enabling students to make a positive transition into University undergraduate studies.

Keywords: enabling education, mentoring, netnography, social learning theory

Procedia PDF Downloads 124
6321 Various Factors Affecting Students Performances In A Saudi Medical School

Authors: Raneem O. Salem, Najwa Al-Mously, Nihal Mohamed Nabil, Abdulmohsen H. Al-Zalabani, Abeer F. Al-Dhawi, Nasser Al-Hamdan

Abstract:

Objective: There are various demographic and educational factors that affect the academic performance of undergraduate medical students. The objective of this study is to identify these factors and correlate them to the GPA of the students. Methods: A cross-sectional study design utilizing grade point averages (GPAs) of two cohorts of students in both levels of the pre-clinical phase. In addition, self-administered questionnaire was used to evaluate the effect of these factors on students with poor and good cumulative GPA. Results: Among the various factors studied, gender, marital status, and the transportation used to reach the faculty significantly affected academic performance of students. Students with a cumulative GPA of 3.0 or greater significantly differed than those with a GPA of less than 3.0 being higher in female students, in married students, and type of transportation used to reach the college. Factors including age, educational factors, and type of transportation used have shown to create a significant difference in GPA between male and females. Conclusion: Factors such as age, gender, marital status, learning resources, study time, and the transportation used have been shown to significantly affect medical student GPA as a whole batch as well as when they are tested for gender.

Keywords: academic performance, educational factors, learning resources, study time, gender, socio-demographic factors

Procedia PDF Downloads 281
6320 Language Choice and Language Maintenance of Northeastern Thai Staff in Suan Sunandha Rajabhat University

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production, 2) product development, 3) the community strength, 4) marketing possibility, and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors, 2) evaluate the strategy based on Sufficiency Economic Philosophy, and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, language choice

Procedia PDF Downloads 242
6319 One-Hit Multiple Instance Logistic Regression for Binary Classification and Its Application to Atomic Force Microscopy Images for Bladder Cancer Determination

Authors: Eugene Demidenko, John Seigne, Igor Sokolov

Abstract:

Multiple instance classification is a known machine learning tech-nique when only a bag of features is labeled. The method of binary multiple instance classification, termed multiple instance logistic regression (LR), received the most attention as a well-defined statistical model. This algorithm is realized in several computer languages, including R (milr) and MATLAB. This work suggests improving this model, which is called the one-hit multiple instance LR. Unlike the existing ap-proach, where unknown labels are treated as missing observations, our model directly implements the ML approach. As such, it is methodologically straightforward and computationally stable, especially when features are highly correlated and/or bags are heterogeneous. Since the one-hit LR admits a closed form for the log-likelihood function, an efficient Fisher scoring algorithm applies with the variances of the regres-sion coefficients computed through the inverse of the Fisher information matrix at the final iteration. Numerical experiments demonstrate the superiority of the one-hit LR in terms of regression coefficients and classification accuracy. Another advantage of our approach is developing the optimal probability threshold for classification (the traditional threshold equals 0 5). The one-hit LR is illustrated with a noninvasive bladder cancer identification where each patient, in the multiple instance terminol-ogy ’bag,’ contains feature images of multiple cells from a urine sample of the same individual. We show that the one-hit LR with two Atomic Force Microscopy (AFM) image features leads to a perfect (AUC=1) or almost perfect (AUC=0.978) classifica-tion of normal and cancer patients among 20 individuals. The -value 0.0018 confirms that the latter AUC is unlikely to be obtained by chance.

Keywords: AUC, classification accuracy, classification p-value, Fisher information, ML, ROC curve

Procedia PDF Downloads 8
6318 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 162
6317 Divergence of Innovation Capabilities within the EU

Authors: Vishal Jaunky, Jonas Grafström

Abstract:

The development of the European Union’s (EU) single economic market and rapid technological change has resulted in major structural changes in EU’s member states economies. The general liberalization process that the countries has undergone together has convinced the governments of the member states of need to upgrade their economic and training systems in order to be able to face the economic globalization. Several signs of economic convergence have been found but less is known about the knowledge production. This paper addresses the convergence pattern of technological innovation in 13 European Union (EU) states over the time period 1990-2011 by means of parametric and non-parametric techniques. Parametric approaches revolve around the neoclassical convergence theories. This paper reveals divergence of both the β and σ types. Further, we found evidence of stochastic divergence and non-parametric convergence approach such as distribution dynamics shows a tendency towards divergence. This result is supported with the occurrence of γ-divergence. The policies of the EU to reduce technological gap among its member states seem to be missing its target, something that can have negative long run consequences for the market.

Keywords: convergence, patents, panel data, European union

Procedia PDF Downloads 294
6316 Mobile Devices and E-Learning Systems as a Cost-Effective Alternative for Digitizing Paper Quizzes and Questionnaires in Social Work

Authors: K. Myška, L. Pilařová

Abstract:

The article deals with possibilities of using cheap mobile devices with the combination of free or open source software tools as an alternative to professional hardware and software equipment. Especially in social work, it is important to find cheap yet functional solution that can compete with complex but expensive solutions for digitizing paper materials. Our research was focused on the analysis of cheap and affordable solutions for digitizing the most frequently used paper materials that are being commonly used by terrain workers in social work. We used comparative analysis as a research method. Social workers need to process data from paper forms quite often. It is still more affordable, time and cost-effective to use paper forms to get feedback in many cases. Collecting data from paper quizzes and questionnaires can be done with the help of professional scanners and software. These technologies are very powerful and have advanced options for digitizing and processing digitized data, but are also very expensive. According to results of our study, the combination of open source software and mobile phone or cheap scanner can be considered as a cost-effective alternative to professional equipment.

Keywords: digitalization, e-learning, mobile devices, questionnaire

Procedia PDF Downloads 154
6315 The Development of Research Based Model to Enhance Critical Thinking, Cognitive Skills and Culture and Local Wisdom Knowledge of Undergraduate Students

Authors: Nithipattara Balsiri

Abstract:

The purposes of this research was to develop instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge of undergraduate students. The sample consisted of 307 undergraduate students. Critical thinking and cognitive skills test were employed for data collection. Second-order confirmatory factor analysis, t-test, and one-way analysis of variance were employed for data analysis using SPSS and LISREL programs. The major research results were as follows; 1) the instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge should be consists of 6 sequential steps, namely (1) the setting research problem (2) the setting research hypothesis (3) the data collection (4) the data analysis (5) the research result conclusion (6) the application for problem solving, and 2) after the treatment undergraduate students possessed a higher scores in critical thinking and cognitive skills than before treatment at the 0.05 level of significance.

Keywords: critical thinking, cognitive skills, culture and local wisdom knowledge

Procedia PDF Downloads 372
6314 Preparation of Gold Nanoparticles Stabilized in Acid-Activated Montmorillonite for Nitrophenol Reduction

Authors: Fatima Ammari, Meriem Chenouf

Abstract:

Synthesis of gold nanoparticles (AuNPs) has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used montmorillonite pre-acidified under gentle conditions for AuNPs stabilization; using different loading percentage 1, 2 and 5%. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in acid-activated montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature The UV-Vis results confirm directly the gold nanaoparticles formation. The XRD N2 adsorption and MET results showed the formation of gold nanoparticles in the pores of preacidified montmorillonite with an average size of 5.7nm. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au°-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 4.5min.

Keywords: gold, acid-activated montmorillonite, nanoparticles, 4-nitrophenol

Procedia PDF Downloads 392
6313 Phylogenetic Analysis of Georgian Populations of Potato Cyst Nematodes Globodera Rostochiensis

Authors: Dali Gaganidze, Ekaterine Abashidze

Abstract:

Potato is one of the main agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. In traditional potato growing regions (Svaneti, Samckhet javaheti and Tsalka), the yield is higher than 30-35 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (PCN) are harmful around the world. Yield losses caused by PCN are estimated up to 30%. Rout surveys conducted in two geographically distinct regions of Georgia producing potatoes - Samtskhe - Javakheti and Svaneti revealed potato cyst nematode Globodera rostochiensi. The aim of the study was the Phylogenetic analyses of Globodera rostochiensi revealed in Georgia by the amplification and sequencing of 28S gen in the D3 region and intergenic ITS1-15.8S-ITS2 region. Identification of all the samples from the two Globodera populations (Samtskhe - Javakheti and Svaneti), i.e., G. rostochiensis (20 isolates) were confirmed by conventional multiplex PCR with ITS 5 universal and PITSp4, PITSr3 specific primers of the cyst nematodes’ (G. pallida, G. rostochiensis). The size of PCR fragment 434 bp confirms that PCN samples from two populations, Samtskhe- Javakheti and Svaneti, belong to G. rostochiensi . The ITS1–5.8S-ITS2 regions were amplified using prime pairs: rDNA1 ( 5’ -TTGATTACGTCCCTGCCCTTT-3’ and rDNA2( 5’ TTTCACTCGCCGTTACTAAGG-3’), D3 expansion regions were amplified using primer pairs: D3A (5’ GACCCCTCTTGAAACACGGA-3’) and D3B (5’-TCGGAAGGAACCAGCTACTA-3’. PCR products of each region were cleaned up and sequenced using an ABI 3500xL Genetic Analyzer. Obtained sequencing results were analyzed by computer program BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cg). Phylogenetic analyses to resolve the relationships between the isolates were conducted in MEGA7 using both distance- and character-based methods. Based on analysis of G.rostochiensis isolate`s D3 expansion regions are grouped in three major clades (A, B and C) on the phylogenetic tree. Clade A is divided into three subclades; clade C is divided into two subclades. Isolates from the Samtckhet-javakheti population are in subclade 1 of clade A and isolates in subclade 1 of clade C. Isolates) from Svaneti populations are in subclade 2 of clade A and in clad B. In Clade C, subclade two is presented by three isolates from Svaneti and by one isolate (GL17) from Samckhet-Javakheti. . Based on analysis of G.rostochiensis isolate`s ITS1–5.8S-ITS2 regions are grouped in two main clades, the first contained 20 Georgian isolates of Globodera rostochiensis from Svaneti . The second clade contained 15 isolates of Globodera rostochiensis from Samckhet javakheti. Our investigation showed of high genetic variation of D3 and ITS1–5.8S-ITS2 region of rDNA of the isolates of G. rostochiensis from different geographic origins (Svameti, Samckhet-Javakheti) of Georgia. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia : Project # FR17_235

Keywords: globodera rostochiensi, PCR, phylogenetic tree, sequencing

Procedia PDF Downloads 201