Search results for: cancer stem cell (CSC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5593

Search results for: cancer stem cell (CSC)

643 Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord

Authors: Jihoon Yang, Jeong II Choi

Abstract:

Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia.

Keywords: mincle, spinal cord, pain, microglia

Procedia PDF Downloads 159
642 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 417
641 Development of Low Calorie Jelly with Increased Content of Natural Compounds from Superfoods with No Added Sugar

Authors: Liana C. Salanță, Maria Tofană, Carmen R. Pop, Vlad Mureșan

Abstract:

The landscape of functional food is expanding very fast, due to the consumer interest for healthy natural products. Consumers nowadays demand healthy products that impart phytonutrients to encourage good health and well-being, prevent diseases, without sacrificing taste and texture. Candies are foodstuffs appreciated by all category of consumers. They are available in a range variety of forms (jellies, marshmallows, caramels, lollipops, etc.). Jelly is characterized by a gummy and chewy texture typically conferred by a hydrocolloid (gelatin, pectin). The purpose of this research was to obtain hypocaloric jelly (no added sugar) enriched with protein powder from acai, chia seeds and hemp, which are considered superfood. Peach and raspberry juice were used for obtaining functional jelly, due to the specific flavour, natural carbohydrate, natural pigments and vitamins (C, B1, PP, etc). Instead of classic hydrocolloids used in Romania for the industry of jelly, agar-agar was used in this study, due to its properties. Agar-agar is able to form gels in the aqueous medium, stronger than other gel-forming agents. High sugar concentrations or an acid environment (as is necessary with pectins) are not needed. In addition to its gelation properties, Agar-agar is considered to have important nutritional benefits, high content of fibre and has low calories. Six prototypes of jellies were obtained and evaluated by physicochemical, microbiological and sensorial analysis. For the textural profile analysis, the Brookfield CT3 Texture Analyzer, equipped with a 10kg load cell, was used. The results revealed that hypocaloric jelly can serve as a good source of bioactive compounds in the diet. The jelly is a convenient way of delivering potential health benefits of protein powder and agar-agar to a wide range of consumers.

Keywords: agar-agar, functional food, hypocaloric jelly, superfoods

Procedia PDF Downloads 126
640 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels

Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan

Abstract:

Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.

Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)

Procedia PDF Downloads 231
639 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 52
638 Attenuation of Amyloid beta (Aβ) (1-42)-Induced Neurotoxicity by Luteolin

Authors: Dona Pamoda W. Jayatunga, Veer Bala Gupta, Eugene Hone, Ralph N. Martins

Abstract:

Being a neurodegenerative disorder, Alzheimer’s disease (AD) affects a majority of the elderly demented worldwide. The key risk factors for AD are age, metabolic syndrome, allele status of APOE gene, head injuries and lifestyle. The progressive nature of AD is characterized by symptoms of multiple cognitive deficits exacerbated over time, leading to death within a decade from clinical diagnosis. However, it is revealed that AD originates via a prodromal phase that spans from one to few decades before symptoms first manifest. The key pathological hallmarks of AD brains are deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT). However, the yet unknown etiology of the disease fails to distinguish mitochondrial dysfunction between a cause or an outcome. The absence of early diagnosis tools and definite therapies for AD have permitted recruits of nutraceutical-based approaches aimed at reducing the risk of AD by modulating lifestyle or be used as preventive tools during AD prodromal state before widespread neurodegeneration begins. The objective of the present study was to investigate beneficial effects of luteolin, a plant-based flavone compound, against AD. The neuroprotective effects of luteolin on amyloid beta (Aβ) (1-42)-induced neurotoxicity was measured using cultured human neuroblastoma BE(2)-M17 cells. After exposure to 20μM Aβ (1-42) for 48 h, the neuroblastoma cells exhibited marked apoptotic death. Co-treatment of 20μM Aβ (1-42) with luteolin (0.5-5μM) significantly protected the cells against Aβ (1-42)-induced toxicity, as assessed by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4sulfophenyl)-2H-tetrazolium, inner salt; MTS] reduction assay and the lactate dehydrogenase (LDH) cell death assay. The results suggest that luteolin prevents Aβ (1-42)-induced apoptotic neuronal death. However, further studies are underway to determine its protective mechanisms in AD including the activity against tau hyperphosphorylation and mitochondrial dysfunction.

Keywords: Aβ (1-42)-induced toxicity, Alzheimer’s disease, luteolin, neuroblastoma cells

Procedia PDF Downloads 150
637 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance

Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao

Abstract:

An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.

Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration

Procedia PDF Downloads 163
636 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 52
635 Flow Reproduction Using Vortex Particle Methods for Wake Buffeting Analysis of Bluff Structures

Authors: Samir Chawdhury, Guido Morgenthal

Abstract:

The paper presents a novel extension of Vortex Particle Methods (VPM) where the study aims to reproduce a template simulation of complex flow field that is generated from impulsively started flow past an upstream bluff body at certain Reynolds number Re-Vibration of a structural system under upstream wake flow is often considered its governing design criteria. Therefore, the attention is given in this study especially for the reproduction of wake flow simulation. The basic methodology for the implementation of the flow reproduction requires the downstream velocity sampling from the template flow simulation; therefore, at particular distances from the upstream section the instantaneous velocity components are sampled using a series of square sampling-cells arranged vertically where each of the cell contains four velocity sampling points at its corner. Since the grid free Lagrangian VPM algorithm discretises vorticity on particle elements, the method requires transformation of the velocity components into vortex circulation, and finally the simulation of the reproduction of the template flow field by seeding these vortex circulations or particles into a free stream flow. It is noteworthy that the vortex particles have to be released into the free stream exactly at same rate of velocity sampling. Studies have been done, specifically, in terms of different sampling rates and velocity sampling positions to find their effects on flow reproduction quality. The quality assessments are mainly done, using a downstream flow monitoring profile, by comparing the characteristic wind flow profiles using several statistical turbulence measures. Additionally, the comparisons are performed using velocity time histories, snapshots of the flow fields, and the vibration of a downstream bluff section by performing wake buffeting analyses of the section under the original and reproduced wake flows. Convergence study is performed for the validation of the method. The study also describes the possibilities how to achieve flow reproductions with less computational effort.

Keywords: vortex particle method, wake flow, flow reproduction, wake buffeting analysis

Procedia PDF Downloads 311
634 Antioxidant Potential of Pomegranate Rind Extract Attenuates Pain, Inflammation and Bone Damage in Experimental Rats

Authors: Ritu Karwasra, Surender Singh

Abstract:

Inflammation is an important physiological response of the body’s self-defense system that helps in eliminating and protecting organism from harmful stimuli and in tissue repair. It is a highly regulated protective response which helps in eliminating the initial cause of cell injury, and initiates the process of repair. The present study was designed to evaluate the ameliorative effect of pomegranate rind extract on pain and inflammation. Hydroalcoholic standardized rind extract of pomegranate at doses 50, 100 and 200 mg/kg and indomethacin (3 mg/kg) was tested against eddy’s hot plate induced thermal algesia, carrageenan (acute inflammation) and Complete Freund’s Adjuvant (chronic inflammation) induced models in Wistar rats. Parameters analyzed were inhibition of paw edema, measurement of joint diameter, levels of GSH, TBARS, SOD, TNF-α, radiographic imaging, tissue histology and synovial expression of pro-inflammatory cytokine receptor (TNF-R1). Radiological and light microscopical analysis were carried out to find out the bone damage in CFA-induced chronic inflammatory model. Findings of the present study revealed that pomegranate rind extract at a dose of 200 mg/kg caused a significant (p<0.05) reduction in paw swelling in both the inflammatory models. Nociceptive threshold was also significantly (p<0.05) improved. Immunohistochemical analysis of TNF-R1 in CFA-induced group showed elevated level, whereas reduction in level of TNF-R1 was observed in pomegranate (200 mg/kg). Henceforth, we might say that pomegranate produced a dose-dependent reduction in inflammation and pain along with the reduction in levels of oxidative stress markers and tissue histology, and the effect was found to be comparable to that of indomethacin. Thus, it can be concluded that pomegranate is a potential therapeutic target in the pathogenesis of inflammation and pain, and punicalagin is the major constituents found in rind extract might be responsible for the activity.

Keywords: carrageenan, inflammation, nociceptive-threshold, pomegranate, histopathology

Procedia PDF Downloads 219
633 Chronic Hepatitis C Virus Screening: The Role, Strategies and Challenging of Primary Healthcare Faced to Augment and Identify Asymptomatic Infected Patients

Authors: Tarek K. Jalouta, Jolietta R. Holliman, Kathryn R. Burke, Kathleen M. Bewley-Thomas

Abstract:

Background: Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma. In the United States, HCV screening awareness, treatment, and linkage to care are under continues ascending progress. However, still millions of people are asymptomatically infected and undiagnosed yet. Through this community mission, we sought to identify the best and the newest strategies to identify those infected people to educate them, link them to care and cure them. Methods: We have identified patients that did not have a prior HCV screening in our Electronic medical record (EMR) including all our different hospital locations (South Suburban Chicago, Northern, Western and Central Indiana). Providing education to all Primary care/Gastroenterology/Infectious diseases providers and staff in the clinic to increase awareness of the HCV screening. Health-related quality of life, chronic clinical complications, and demographics data were collected for each patient. All outcomes of HCV antibody-reactive and HCV RNA–positive results were identified and statistically analyzed. Results: From July 2016 to July 2018 we screened 35,720 individuals of birth cohort in our different Franciscan’s health medical centers. Of the screened population, 986 (2.7%) individuals were HCV AB-reactive. Of those, 319 (1%) patients were HCV RNA-positive, and 264 patients were counseled and linked to providers. 34 patients initiated anti-HCV therapy with successful treatment. Conclusions: Our HCV screening augmentation project considered the largest screening program in the Midwest. Augmenting the HCV screening process through creating a Best Practice Alert (BPA) in the EMR (Epic Sys.) and point of care testing could be helpful. Although continued work is required, our team is working on increase screening through adding HCV test to CBC-Panels in Emergency Department settings, phone calls to all birth cohort individuals through Robo-Calling System aimed to reach 75,000 individuals by 2019. However, a better linkage to care and referral monitoring system to all HCV RNA positive patients is still needed, and access to therapy, especially for uninsured patients, is challenging.

Keywords: chronic hepatitis C, chronic hepatitis C treatment, chronic hepatitis C screening, chronic hepatitis C prevention, liver cancer

Procedia PDF Downloads 125
632 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 128
631 Comparative Evaluation of Seropositivity and Patterns Distribution Rates of the Anti-Nuclear Antibodies in the Diagnosis of Four Different Autoimmune Collagen Tissue Diseases

Authors: Recep Kesli, Onur Turkyilmaz, Cengiz Demir

Abstract:

Objective: Autoimmune collagen diseases occur with the immune reactions against the body’s own cell or tissues which cause inflammation and damage the tissues and organs. In this study, it was aimed to compare seropositivity rates and patterns of the anti-nuclear antibodies (ANA) in the diagnosis of four different autoimmune collagen tissue diseases (Rheumatoid Arthritis-RA, Systemic Lupus Erythematous-SLE, Scleroderma-SSc and Sjogren Syndrome-SS) with each other. Methods: One hundred eighty-eight patients applied to different clinics in Afyon Kocatepe University ANS Practice and Research Hospital between 11.07.2014 and 14.07.2015 that thought the different collagen disease such as RA, SLE, SSc and SS have participated in the study retrospectively. All the data obtained from the patients participated in the study were evaluated according to the included criteria. The historical archives belonging to the patients have been screened, assessed in terms of ANA positivity. The obtained data was analysed by using the descriptive statistics; chi-squared, Fischer's exact test. The evaluations were performed by SPSS 20.0 version and p < 0.05 level was considered as significant. Results: Distribution rates of the totally one hundred eighty-eight patients according to the diagnosis were found as follows: 82 (43.6%) were RA, 38 (20.2%) were SLE, 22 (11.7%) were SSc, and 46 (24.5%) were SS. Distribution of ANA positivity rates according to the collagen tissue diseases were found as follows; for RA were 54 (65,9 %), for SLE were 36 (94,7 %), for SSc were 18 (81,8 %), and for SS were 43 (93,5 %). Rheumatoid arthritis should be evaluated and classified as a different class among all the other investigated three autoimmune illnesses. ANA positivity rates were found as differently higher (91.5 %) in the SLE, SSc, and SS, from the RA (65.9 %). Differences at ANA positivity rates for RA and the other three diseases were found as statistically significant (p=0.015). Conclusions: Systemic autoimmune illnesses show broad spectrum. ANA positivity was found as an important predictor marker in the diagnosis of the rheumatologic illnesses. ANA positivity should be evaluated as more valuable and sensitive a predictor diagnostic marker in the laboratory findings of the SLE, SSc, and SS according to RA.

Keywords: antinuclear antibody (ANA), rheumatoid arthritis, scleroderma, Sjogren syndrome, systemic lupus Erythemotosus

Procedia PDF Downloads 243
630 An Assessment of Nodulation and Nitrogen Fixation of Lessertia Frutescens Plants Inoculated with Rhizobial Isolates from the Cape Fynbos

Authors: Mokgadi Miranda Hlongwane, Ntebogeng Sharon Mokgalaka, Felix Dapare Dakora

Abstract:

Lessertia (L.) frutescens (syn. Sutherlandia frutescens) is a leguminous medicinal plant indigenous to South Africa. Traditionally, L. frutescens has been used to treat cancer, diabetes, epilepsy, fever, HIV, stomach problems, wounds and other ailments. This legume is endemic to the Cape fynbos, with large populations occurring wild and cultivated in the Cape Florist Region. Its widespread distribution in the Western Cape, Northern Cape, Eastern Cape and Kwazulu-Natal is linked to its increased use as a phytomedicine in the treatment of various diseases by traditional healers. The frequent harvesting of field plants for use as a medicine has made it necessary to undertake studies towards the conservation of Lessertia frutescens. As a legume, this species can form root nodules and fix atmospheric N₂ when in symbiosis with soil bacteria called rhizobia. So far, however, few studies (if any) have been done on the efficacy and diversity of native bacterial symbionts nodulating L. frutescens in South Africa. The aim of this project was to isolate and characterize L. frutescens-nodulating bacteria from five different locations in the Western Cape Province. This was done by trapping soil rhizobia using rhizosphere soil suspension to inoculate L. frutescens seedlings growing in sterilized sand and receiving sterile N-free Hoagland nutrient solution under glasshouse conditions. At 60 days after planting, root nodules were harvested from L. frutescens plants, surface-sterilized, macerated, and streaked on yeast mannitol agar (YMA) plates and incubated at 28 ˚C for observation of bacterial growth. The majority of isolates were slow-growers that took 6-14 days to appear on YMA plates. However, seven isolates were fast-growers, taking 2-4 days to appear on YMA plates. Single-colony cultures of the isolates were assessed for their ability to nodulate L. frutescens as a homologous host under glasshouse conditions. Of the 92 bacterial isolates tested, 63 elicited nodule formation on L. frutescens. Symbiotic effectiveness varied markedly between and among test isolates. There were also significant (p≤0.005) differences in nodulation, shoot biomass, photosynthetic rates, leaf transpiration and stomatal conductance of L. frutescens plants inoculated with the test isolates, which is an indication of their functional diversity.

Keywords: lessertia frutescens, nodulating, rhizobia, symbiotic effectiveness

Procedia PDF Downloads 193
629 Pale, Soft, Exudative (PSE) Turkey Meat in a Brazilian Commercial Processing Plant

Authors: Danielle C. B. Honorato, Rafael H. Carvalho, Adriana L. Soares, Ana Paula F. R. L. Bracarense, Paulo D. Guarnieri, Massami Shimokomaki, Elza I. Ida

Abstract:

Over the past decade, the Brazilian production of turkey meat increased by more than 50%, indicating that the turkey meat is considered a great potential for the Brazilian economy contributing to the growth of agribusiness at the marketing international scenario. However, significant color changes may occur during its processing leading to the pale, soft and exudative (PSE) appearance on the surface of breast meat due to the low water holding capacity (WHC). Changes in PSE meat functional properties occur due to the myofibrils proteins denaturation caused by a rapid postmortem glycolysis resulting in a rapid pH decline while the carcass temperature is still warm. The aim of this study was to analyze the physical, chemical and histological characteristics of PSE turkey meat obtained from a Brazilian commercial processing plant. The turkey breasts samples were collected (n=64) at the processing line and classified as PSE at L* ≥ 53 value. The pH was also analyzed after L* measurement. In sequence, PSE meat samples were evaluated for WHC, cooking loss (CL), shear force (SF), myofibril fragmentation index (MFI), protein denaturation (PD) and histological evaluation. The abnormal color samples presented lower pH values, 16% lower fiber diameter, 11% lower SF and 2% lower WHC than those classified as normal. The CL, PD and MFI were, respectively, 9%, 18% and 4% higher in PSE samples. The Pearson correlation between the L* values and CL, PD and MFI was positive, while that SF and pH values presented negative correlation. Under light microscopy, a shrinking of PSE muscle cell diameter was approximately 16% shorter in relation to normal samples and an extracellular enlargement of endomysium and perimysium sheaths as the consequence of higher water contents lost as observed previously by lower WHC values. Thus, the results showed that PSE turkey breast meat presented significant changes in their physical, chemical and histological characteristics that may impair its functional properties.

Keywords: functional properties, histological evaluation, meat quality, PSE

Procedia PDF Downloads 460
628 The Prevalence of Obesity among a Huge Sample of 5-20 Years Old Jordanian Children and Adolescents Based on CDC Criteria

Authors: Walid Al-Qerem, Ruba Zumot

Abstract:

Background: The rise of obesity among children and adolescents remains a primary challenge for healthcare providers globally and in the Middle East. The aim of the present study is to determine the prevalence of obesity among 5-20 years old Jordanians based on CDC criteria. Method: A total of 5722 Jordanians (37% males; 63% females) aged 5-20 years data were retrieved from the Jordanian Ministry of Health electronic database (Hakeem). As per the CDC selection criteria, the chosen data pertains exclusively to healthy Jordanian children and adolescents who are medically sound, not suffering from health conditions, and not undergoing any treatments that could hinder normal growth patterns, such as severe infection, chronic kidney disease (CKD), Down’s syndrome, attention deficit hyperactivity disorder, cancer, heart disease, lung disease, cystic fibrosis, Crohn’s disease, type 1 diabetes, hormonal disturbances, any stress-related conditions, hormonal therapy such as corticosteroids, Growth hormones (GHS) or gonadotropin-releasing hormone agonists, insulin, and amphetamines or any other stimulants. In addition, participants with missing or invalid data values for anthropometric measurements were excluded from the study. Weight for age and body mass index for age were analyzed comparatively for Jordanian children and adolescents against the international growth standards. The Z-score for each record was computed based on CDC equations. As per CDC classifications, BMI for age percentiles, values ≥85th and < 95th are classified as overweight, and value at ≥ 95th is classified as obesity. Results: The average age of the evaluated sample was 12.33 ±4.39 years (10.79 ±3.39 for males and 13.23 ± 4.66 for females). The mean weight for males and females were 33.16±14.17 Kg and 133.54±17.17 cm for males, 43.86 ±18.82 Kg, and 142.19±18.35 for females, while for BMI the mean was for boys and girls 17.81±3.88 and 20.52±5.03 respectively. The results indicated that based on CDC criteria, 8.9% of males were classified as children/adolescents with overweight, and 9.7% were classified as children/adolescents with obesity, while in females, 17.8% were classified as children/adolescents with overweight and 10.2% were classified as children/adolescents with obesity. Discussion: The high prevalence of obesity reported in the present study emphasizes the importance of applying different strategies to prevent childhood obesity, including encouraging physical activity, promoting healthier food options, and behavioral changes. Conclusion: The results presented in this study indicated the high prevalence of overweight/obesity among Jordanian adolescents and children, which must be tagged by healthcare planners and providers.

Keywords: CDC, obesity, childhood, Jordan

Procedia PDF Downloads 57
627 Effects of Cuminum cyminum L. Essential Oil Supplementation on Components of Metabolic Syndrome: A Clinical Trial

Authors: Ashti Morovati, Hushyar Azari, Bahram Pourghassem Gargari

Abstract:

Objectives and goals: The prevalence of metabolic syndrome (MetS), as a major health burden for societies, is increasing. This clinical trial was conducted to evaluate the effects of CuEO supplementation on anthropometric indices, systolic and diastolic blood pressure, blood glucose level, insulin resistance and serum lipid level in patients suffering from MetS. Methods: This was a randomized, triple‐blind, placebo‐controlled clinical trial in which 56 patients with MetS aged 18–60 years who fulfilled the eligibility criteria were randomly allocated to an intervention or a control group. Inclusion criteria for the study were comprised of diagnosis of MetS according to the new International Federation of Diabetes. The exclusion criteria were defined as: taking herbal supplements, use of drugs having evident interaction with cumin such as anti‐depressant drugs, vitamin D, omega 3, selenium, zinc, smoking, pregnancy, or breastfeeding, suffering from cancer, having any history of gastrointestinal and hepatic, cardiovascular, thyroid and kidney disorders, and menopause. 75 mg CuEO or placebo soft gels were administered three times daily to the participants for eight weeks. The soft gel consumption was checked by asking the participants to bring the medication containers in the follow‐up visits at the 4th and the 8th weeks of the study. Data pertaining to blood pressure, height, weight, waist circumference, hip circumference and BMI, as well as food consumption were collected at the beginning and end of the study. Fasting blood samples ( glucose, triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) were obtained and biochemical measurements were assessed at the beginning and end of the study. Results: At eight weeks, a total of 44 patients completed this study. Except for diastolic blood pressure (DBP), the other assessed variables were not significantly different between the two groups. In intra group analysis, placebo and CuEO groups both had insignificant decrements in DBP (mean difference [MD] with 95% CI: −3.31 [−7.11, 0.47] and −1.77 [−5.95, 2.40] mmHg, respectively). However, DBP was significantly lower in CuEO compared with the placebo group at the end of study (81.41 ± 5.88 vs. 84.09 ± 5.54 mmHg, MD with 95% CI: −3.98 [−7.60, −0.35] mmHg, p < .05). Conclusions: The results of this study indicated that CuEO does not have any effect on MetS components, except for DBP in patients with MetS.

Keywords: blood pressure, fasting blood glucose, lipid profile, waist circumference

Procedia PDF Downloads 150
626 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 301
625 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 234
624 Rare Case of Three Metachronous Cancers Occurring over the Period of Three Years: Clinical Importance of Investigating Neoplastic Growth Discovered during Follow-Up

Authors: Marin Kanarev, Delyan Stoyanov, Ivanna Popova, Nadezhda Petrova

Abstract:

Thanks to increased survival rates in patients bearing oncological malignancies due to recent developments in anti-cancer therapies and diagnostic techniques, observation of clinical cases of metachronous cancers is more common and can provide more in-depth knowledge of their development and, as a result, help clinicians apply suitable therapy. This unusual case of three metachronous tumors presented the opportunity to follow their occurrence, progression, and treatment thoroughly. A 77-year-old male presented with carcinoma ventriculi of the pylorus region, which was surgically removed via upper subtotal stomach resection, a lateral antecolical gastro-enteroanastomosis, and a subsequent Braun anastomosis. An EOX chemotherapy regimen followed. A CT scan four months later showed no indication of recurrence or dissemination. The same scan, performed as a part of the follow-up plan two years later, showed an indication of neoplastic growth in the urinary bladder. After the patient had been directed to a urologist, the suspicion was confirmed, and the growth was histologically diagnosed as a carcinoma of the urinary bladder. An immunohistochemistry test showed an expression of PDL1 of less than 5%, which resulted in treatment with GemCis chemotherapy regimen that led to full remission. Two years and seven months after the first surgery, a CT scan showed again that the two carcinomas were gone. However, four months later, elevated tumor markers prompted a PET/CT scan, which showed data indicative of recurring neoplastic growth in the region of the stomach cardia. It was diagnosed as an adenocarcinoma infiltrating the esophagus. Preoperative chemotherapy with the ECF regimen was completed in four courses, and a CT scan showed no progression of the disease. In less than a month after therapy, the patient underwent laparotomy, debridement, gastrectomy, and a subsequent mechanical terminal-lateral esophago-jejunoanasthomosis. It was verified that the tumor originated from metastasis from the carcinoma ventriculi, which was located in the pylorus. In conclusion, this case report highlights the importance of patient follow-up and studying recurring neoplastic growth. Despite the absence of symptoms, clinicians should maintain a high level of suspicion when evaluating the patient data and choosing the most suitable therapy.

Keywords: carcinoma, follow-up, metachronous, neoplastic growth, recurrence

Procedia PDF Downloads 88
623 The Efficacy of Pre-Hospital Packed Red Blood Cells in the Treatment of Severe Trauma: A Retrospective, Matched, Cohort Study

Authors: Ryan Adams

Abstract:

Introduction: Major trauma is the leading cause of death in 15-45 year olds and a significant human, social and economic costs. Resuscitation is a stalwart of trauma management, especially in the pre-hospital environment and packed red blood cells (pRBC) are being increasingly used with the advent of permissive hypotension. The evidence in this area is lacking and further research is required to determine its efficacy. Aim: The aim of this retrospective, matched cohort study was to determine if major trauma patients, who received pre-hospital pRBC, have a difference in their initial emergency department cardiovascular status; when compared with injury-profile matched controls. Methods: The trauma databases of the Royal Brisbane and Women's Hospital, Royal Children's Hospital (Herston) and Queensland Ambulance Service were accessed and major trauma patient (ISS>12) data, who received pre-hospital pRBC, from January 2011 to August 2014 was collected. Patients were then matched against control patients that had not received pRBC, by their injury profile. The primary outcomes was cardiovascular status; defined as shock index and Revised Trauma Score. Results: Data for 25 patients who received pre-hospital pRBC was accessed and the injury profiles matched against suitable controls. On admittance to the emergency department, a statistically significant difference was seen in the blood group (Blood = 1.42 and Control = 0.97, p-value = 0.0449). However, the same was not seen with the RTS (Blood = 4.15 and Control 5.56, p-value = 0.291). Discussion: A worsening shock index and revised trauma score was associated with pre-hospital administration of pRBC. However, due to the small sample size, limited matching protocol and associated confounding factors it is difficult to draw any solid conclusions. Further studies, with larger patient numbers, are required to enable adequate conclusions to be drawn on the efficacy of pre-hospital packed red blood cell transfusion.

Keywords: pre-hospital, packed red blood cells, severe trauma, emergency medicine

Procedia PDF Downloads 393
622 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 65
621 Cost Effective Microfabrication Technique for Lab on Chip (LOC) Devices Using Epoxy Polymers

Authors: Charmi Chande, Ravindra Phadke

Abstract:

Microfluidics devices are fabricated by using multiple fabrication methods. Photolithography is one of the common methods wherein SU8 is widely used for making master which in turn is used for making working chip by the process of soft lithography. The high-aspect ratio features of SU-8 makes it suitable to be used as micro moulds for injection moulding, hot embossing, and moulds to form polydimethylsiloxane (PDMS) structures for bioMEMS (Microelectromechanical systems) applications. But due to high cost, difficulty in procuring and need for clean room, restricts the use of this polymer especially in developing countries and small research labs. ‘Bisphenol –A’ based polymers in mixture with curing agent are used in various industries like Paints and coatings, Adhesives, Electrical systems and electronics, Industrial tooling and composites. We present the novel use of ‘Bisphenol – A’ based polymer in fabricating micro channels for Lab On Chip(LOC) devices. The present paper describes the prototype for production of microfluidics chips using range of ‘Bisphenol-A’ based polymers viz. GY 250, ATUL B11, DER 331, DER 330 in mixture with cationic photo initiators. All the steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. This even excludes the need of clean room. The produced chips using all above mentioned polymers were validated with respect to height and the chip giving least height was selected for further experimentation. The lowest height achieved was 7 micrometers by GY250. The cost of the master fabricated was $ 0.20 and working chip was $. 0.22. The best working chip was used for morphological identification and profiling of microorganisms from environmental samples like soil, marine water and salt water pan sites. The current chip can be adapted for various microbiological screening experiments like biochemical based microbial identification, studying uncultivable microorganisms at single cell/community level.

Keywords: bisphenol–A based epoxy, cationic photoinitiators, microfabrication, photolithography

Procedia PDF Downloads 287
620 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 103
619 The Antioxidant Gel Mask Supplies Of Bitter Melon's Extract ( Momordica charantia Linn.)

Authors: N. S. Risqina, G. Edijanti, P. S. Nurita, L. Endang, R. A. Siti, R. Tri

Abstract:

Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm.

Keywords: antioxdant, bitter melon, gel mask, IC50

Procedia PDF Downloads 470
618 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 155
617 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 422
616 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt

Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah

Abstract:

With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.

Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA

Procedia PDF Downloads 410
615 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 132
614 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 308