Search results for: polymer electrolyte membrane fuel cell
2223 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 872222 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity
Procedia PDF Downloads 2722221 Zinc Oxide Thin Films Deposition by Spray Pyrolysis
Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf
Abstract:
Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.Keywords: precursor, thins films, spray pyrolysis, zinc oxide
Procedia PDF Downloads 3252220 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE
Procedia PDF Downloads 752219 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells
Authors: Mariyappan Shanmugam, Bin Yu
Abstract:
Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier
Procedia PDF Downloads 3282218 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine
Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi
Abstract:
One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth
Procedia PDF Downloads 1402217 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study
Authors: Faris Tarlochan, Siva Mahesh Tangutooru
Abstract:
Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses
Procedia PDF Downloads 2732216 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 3292215 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells
Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska
Abstract:
Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells
Procedia PDF Downloads 4802214 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes
Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra
Abstract:
Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis
Procedia PDF Downloads 1882213 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites
Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman
Abstract:
Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).Keywords: polyaniline, photograft, sol-gel, uv-curable polymer
Procedia PDF Downloads 3002212 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 3472211 Modeling of Glycine Transporters in Mammalian Using the Probability Approach
Authors: K. S. Zaytsev, Y. R. Nartsissov
Abstract:
Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning
Procedia PDF Downloads 1172210 Immune Responses and Pathological Manifestations in Chicken to Oral Infection with Salmonella typhimurium
Authors: Mudasir Ahmad Syed, Raashid Ahmd Wani, Mashooq Ahmad Dar, Uneeb Urwat, Riaz Ahmad Shah, Nazir Ahmad Ganai
Abstract:
Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses. However, the Salmonella Typhimurium is also able to cause infection in humans, described by typhoid fever and acute gastro-intestinal disease. A study was conducted at days to investigate pathological, histopathological, haemato-biochemical, immunological and expression kinetics of NRAMP (natural resistance associated macrophage protein) gene family (NRAMP1 and NRAMP2) in broiler chickens following experimental infection of Salmonella Typhimurium at 0,1,3,5,7,9,11,13 and 15 days respectively. Infection was developed in birds through oral route at 2×108 CFU/ml. Clinical symptoms appeared 4 days post infection (dpi) and after one-week birds showed progressive weakness, anorexia, diarrhea and lowering of head. On postmortem examination, liver showed congestion, hemorrhage and necrotic foci on surface, while as spleen, lungs and intestines revealed congestion and hemorrhages. Histopathological alterations were principally observed in liver in second week post infection. Changes in liver comprised of congestion, areas of necrosis, reticular endothelial hyperplasia in association with mononuclear cell and heterophilic infiltration. Hematological studies confirm a significant decrease (P<0.05) in RBC count, Hb concentration and PCV. White blood cell count showed significant increase throughout the experimental study. An increase in heterophils was found up to 7dpi and a decreased pattern was observed afterwards. Initial lymphopenia followed by lymphocytosis was found in infected chicks. Biochemical studies showed a significant increase in glucose, AST and ALT concentration and a significant decrease (P<0.05) in total protein and albumin level in the infected group. Immunological studies showed higher titers of IgG in infected group as compared to control group. The real time gene expression of NRAMPI and NRAMP2 genes increased significantly (P<0.05) in infected group as compared to controls. The peak expression of NRAMP1 gene was seen in liver, spleen and caecum of infected birds at 3dpi, 5dpi and 7dpi respectively, while as peak expression of NRAMP2 gene in liver, spleen and caecum of infected chicken was seen at 9dpi, 5dpi and 9dpi respectively. This study has role in diagnostics and prognostics in the poultry industry for the detection of salmonella infections at early stages of poultry development.Keywords: biochemistry, histopathology, NRAMP, poultry, real time expression, Salmonella Typhimurium
Procedia PDF Downloads 3302209 Carbon Capture and Storage: Prospects in India
Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg
Abstract:
The demand of energy is increasing at every part of the world. Thus, use of fossil fuel is efficient which results in large liberation of carbon dioxide in atmosphere. Tons of this CO2 raises the risk of dangerous climate changes. To minimize the risk carbon capture and storage (CCS) has to be used so that the emitted carbon dioxide do not reach the atmosphere. CCS is being considered as one of the options that could have a major role to play in India.With the growing awareness towards the global warming, carbon capture and sequestration has a great importance. New technologies and theories are in use to capture CO2. This paper contains the methodology and technologies that is in use to capture carbon dioxide in India. The present scenario of CCS is also being discussed. CCS is playing a major role in enhancing recovery of oil (ERO). Both the purpose 1) minimizing percentage of carbon dioxide in atmosphere and 2) enhancing recovery of oil are fulfilled from the CCS. The CO2 is usually captured from coal based power plant and from some industrial sources and then stored in the geological formations like oil and gas reservoir and deep aquifers or in oceans. India has large reservoirs of coal which are being used for storing CO2, as coal is a good absorbent of CO2. New technologies and studies are going on for injection purposes. Government has initiated new plans for CCS as CCS is technically feasible and economically attractive. A discussion is done on new schemes that should bring up CCS plans and approaches. Stakeholders are welcomed for suitability of CCS. There is still a need to potentially capture the CO2 and avail its storage in developing country like India.Keywords: Carbon Capture and Storage (CCS), carbon dioxide (CO2), enhance oil recovery, geological formations, stakeholders
Procedia PDF Downloads 4682208 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization
Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder
Abstract:
Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.Keywords: chars, porous, water holding capacity, combustion process
Procedia PDF Downloads 3632207 Design of Speedy, Scanty Adder for Lossy Application Using QCA
Authors: T. Angeline Priyanka, R. Ganesan
Abstract:
Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover
Procedia PDF Downloads 5552206 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5302205 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3762204 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization
Procedia PDF Downloads 662203 Techno-Economic Comparative Analysis of Grid Connected Solar Photovoltaic (PV) to Solar Concentrated Solar Power (CSP) for Developing Countries: A Case Study of Kenya and Zimbabwe
Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu
Abstract:
The potential of power generation from solar resources has been established as being robust in sub Saharan Africa. Consequently many governments in the region have encouraged the exploitation of this resource through, inter alia direct funding, subsidies and legislation (such as feed in tariffs). Through a case study of Kenya and Zimbabwe it is illustrated that a good deal of proposed grid connected solar power projects and related feed in tariffs have failed to take into account key economic and technical considerations in the selection of solar technologies to be implemented. This paper therefore presents a comparison between concentrated solar power (CSP) and solar photovoltaic (PV) to assess which technology is better suited to meet the energy demand for a given set of prevailing conditions. The evaluation criteria employed is levelized cost of electricity (LCOE), net present value (NPV) and plant capacity factor. The outcome is therefore a guide to aid policy makers and project developers in choosing between CSP and PV given certain solar irradiance values, planned nominal plant capacity, availability of water resource and a consideration of whether or not the power plant is intended to compete with existing technologies, primarily fossil fuel powered, in meeting the peak load.load.Keywords: capacity factor, peak load, solar PV, solar CSP
Procedia PDF Downloads 2872202 MicroRNA 200c-3p Regulates Autophagy Mediated Upregulation of Endoplasmic Reticulum Stress in PC-3 Cells
Authors: Eun Jung Sohn, Hwan Tae Park
Abstract:
Autophagy is a cellular response to stress or environment on cell survival. Here, we investigated the role of ectopic expression of miR 200c-3p in autophagy. Ectopic expression of miR 200c-3p increased the expression of IRE1alpha, ATF6 and CHOP by western blot and RT-qPCR. Furthermore, the level of microRNA 200c-3p was enhanced by treatment of TG or overexpression of GRP 78. Also, ectopic expression of miR200c-3p increased the LC3 II expression by western blot and RT-qPCR. Also, we found that western blot assay showed that miR200c-3p inhibitor was blocked the starvation–induced LC3II levels. Furthermore, starvation stress increased the level of miR200c-3p in different kinetics. Ectopic expression of miR200c-3p attenuated LC3II expression in IRE1 siRNA transfected PC3 cells. Here, we first demonstrate that miR200c-3p regulates autophagy via ER stress pathway.Keywords: Autophagy, ER stress, LC3II, miR200c-3p
Procedia PDF Downloads 2862201 Solar Technology: A Review of Government-Sponsored Green Energy
Authors: Christopher Battle
Abstract:
The pursuit of a sustainable future is dependent on the ability of governments from the national to municipal level. The politics of energy and the development of state-sponsored photovoltaic cell expansion can nebulize in several ways based on a state or nation's physical and human geography. This study conducts a comparative analysis of the energy and solar program of Turkey, Pennsylvania, and Philadelphia. The study aims to assess the city of Philadelphia's solar policies in contrast with both its political history and the photovoltaic programs of Turkey, a world leader in solar system development, and Pennsylvania's history of energy regulation. This comparative study found that after hundreds of bills and regulations over decades, sustainable energy development in affordable housing and new construction is the next phase of State-Sponsored Green energy for the city of Philadelphia.Keywords: Turkey, solar power, Philadelphia, affordable energy development
Procedia PDF Downloads 942200 Designing and Using a 3-D Printed Dynamic Upper Extremity Orthosis (DUEO) with Children with Cerebral Palsy and Severe Upper Extremity Involvement
Authors: Justin Lee, Siraj Shaikh, Alice Chu MD
Abstract:
Children with cerebral palsy (CP) commonly present with upper extremity impairment, affecting one or both extremities, and are classified using the Manual Ability Classification Scale (MACS). The MACS defines bimanual hand abilities for children ages 4-18 years in everyday tasks and is a gradient scale, with I being nearly normal and V requiring total assistance. Children with more severe upper extremity impairment (MACS III-V) are often underrepresented, and relatively few effective therapies have been identified for these patients. Current orthoses are static and are only meant to prevent the progression of contractures in these patients. Other limitations include cost, comfort, accessibility, and longevity of the orthoses. Taking advantage of advances in 3D printing technology, we have created a highly customizable upper extremity orthotic that can be produced at a low cost. Iterations in our design have resulted in an orthotic that is custom fit to the patient based on scans of their arm, made of rigid polymer when needed to provide support, flexible material where appropriate to allow for comfort, and designed with a mechanical pulley system to allow for some functional use of the arm while in the orthotic. Preliminary data has shown that our orthotic can be built at a fraction of the cost of current orthoses and provide clinically significant improvement in assisting hand assessment (AHA) and pediatric quality of life scores (PedsQL).Keywords: upper extremity orthosis, upper extremity, orthosis, 3-D printing, cerebral palsy, occupational therapy, spasticity, customizable
Procedia PDF Downloads 3062199 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3562198 Finite Element Analysis of Connecting Rod
Authors: Mohammed Mohsin Ali H., Mohamed Haneef
Abstract:
The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.Keywords: connecting rod, ASTM a514 cold quenched material, static analysis, fatigue analysis, stress life approach
Procedia PDF Downloads 2992197 Complicated Corneal Ulceration in Cats: Clinical Diagnosis and Surgical Management of 80 Cases
Authors: Khaled M. Ali, Ayman A. Mostafa, Soliman M. Soliman
Abstract:
Objectives: To describe the most common clinical and endoscopic findings associated with complicated corneal ulcers in cats, and to determine the short-term outcomes after surgical treatment of these cats. Animals Eighteen client-owned cats of different breeds (52 females and 28 males), ranging in age from 3 months to 6 years, with corneal ulcers. Procedures: Cats were clinically evaluated to initially determine the concurrent corneal abnormalities. Endoscopic examination was performed to determine the anterior and posterior segments abnormalities. Superficial and deep stromal ulcers were treated using conjunctival flap. Corneal sequestrum was treated by partial keratectomy and conjunctival flap. Anterior synechia was treated via peripheral iridectomy and separation of the adhesion between the iris and the inner cornea. Symblepharon was treated by removal of the adhered conjunctival membrane from the cornea. Incurable endophthalmitis was treated surgically by extirpation. Short-term outcomes after surgical managements of selected corneal abnormalities were then assessed clinically and endoscopically. Results: Deep stromal ulcer with descemetocele, endophthalmitis, symblepharon, corneal sequestration and anterior synechia with secondary glaucoma and corneal scarring were the most common complications of corneal ulcer. FHV-1 was a common etiologic factor of corneal ulceration. Persistent corneal scars of varying shape and size developed in cats with deep stromal ulcer, anterior synechia, and corneal sequestration. Conclusions: Domestic shorthaired and Persian cats were the most predisposed breeds to FHV-1 infection and subsequent corneal ulceration. Immediate management of patients with corneal ulcer would prevent serious complications. No age or sex predisposition to complicated corneal ulceration in cats.Keywords: cats, complicated corneal ulceration, clinical, endoscopic diagnosis, FHV-1
Procedia PDF Downloads 2812196 Fuel Oxidation Reactions: Pathways and Reactive Intermediates Characterization via Synchrotron Photoionization Mass Spectrometry
Authors: Giovanni Meloni
Abstract:
Recent results are presented from experiments carried out at the Advanced Light Source (ALS) at the Chemical Dynamics Beamline of Lawrence Berkeley National Laboratory using multiplexed synchrotron photoionization mass spectrometry. The reaction mixture and a buffer gas (He) are introduced through individually calibrated mass flow controllers into a quartz slow flow reactor held at constant pressure and temperature. The gaseous mixture effuses through a 650 μm pinhole into a 1.5 mm skimmer, forming a molecular beam that enters a differentially pumped ionizing chamber. The molecular beam is orthogonally intersected by a tunable synchrotron radiation produced by the ALS in the 8-11 eV energy range. Resultant ions are accelerated, collimated, and focused into an orthogonal time-of-flight mass spectrometer. Reaction species are identified by their mass-to-charge ratios and photoionization (PI) spectra. Comparison of experimental PI spectra with literature and/or simulated curves is routinely done to assure the identity of a given species. With the aid of electronic structure calculations, potential energy surface scans are performed, and Franck-Condon spectral simulations are obtained. Examples of these experiments are discussed, ranging from new intermediates characterization to reaction mechanisms elucidation and biofuels oxidation pathways identification.Keywords: mass spectrometry, reaction intermediates, synchrotron photoionization, oxidation reactions
Procedia PDF Downloads 712195 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)
Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke
Abstract:
Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.Keywords: macro and micronutrients, tomato, SAS package, photosynthates
Procedia PDF Downloads 4742194 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol
Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez
Abstract:
Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis
Procedia PDF Downloads 124